CAREER: Engineering Structure and Ionic Conductivity in Li7La3Zr2O12 Nanowire-Based Solid Electrolytes

职业:Li7La3Zr2O12 纳米线固体电解质的工程结构和离子电导率

基本信息

  • 批准号:
    1553519
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Lithium ion batteries are ubiquitous in laptops and cell phones and may gain more use in transportation applications in the near future. However, these batteries suffer from safety issues originating from the flammable liquid electrolyte that is used to transport lithium ions within the battery. One of the most promising candidates for a safer, replacement electrolyte is the ceramic lithium lanthanum zirconate (LLZO), which has good thermal/chemical stability and ionic transport properties. Nonetheless, there is still much fundamental research needed in order to improve understanding of several critical issues in LLZO and how to improve its performance. This project investigates novel LLZO nanowire structures and composites with unique nanoscale properties that can improve their conductivity for lithium ions and integration into safer, all-solid-state batteries. This project also supports education and outreach activities that focus on improving the pipeline and retention of female students in science and engineering through hands-on experiences that will increase understanding and retention of engineering concepts and stimulate the students' interests in research. Outreach to local middle school girls through a battery-related challenge to provide context on issues related to electric cars and research opportunities to high school, undergraduate, and graduate students are example activities. Educational efforts include international exchange of teaching methodologies with faculty in South Korea to understand strategies that promote female student achievement, as well as how to best engage students from diverse backgrounds in student-centered learning environments.TECHNICAL DETAILS: This research project aims to correlate composition, grain boundary structure, and crystal phase with ionic conductivity in LLZO nanowire materials prepared using electrospinning. Nanowire solid electrolytes can offer characteristics that are beneficial and advantageous compared to bulk materials - namely milder calcination conditions for crystallization, stabilization of metastable phases, and opportunities for unique structures such as core-shell composites. These characteristics can lead to properties that improve the ionic conductivity, sintering ability, and integration of the electrolytes into all-solid-state batteries. The nanowires are used to understand the LLZO phase stability, crystallization, and sintering processes. Core-shell nanowire structures are used to investigate interfacial properties and transport in composites to understand how to maximize highly conducting pathways for lithium ions and uniformly modify grain boundaries. Additionally, detailed in situ and aberration-corrected transmission electron microscopy is used to understand processes such as crystallization of electrospun nanowires, impurity segregation to grain boundaries, sintering in networks of nanowires, and interdiffusion at the electrolyte/cathode interface. This information is being correlated with ionic conductivity and electrochemical cycling tests on the nanowire solid electrolyte materials and compared to bulk materials. The insights gained from this work are enabling better control of composition, stabilization of metastable phases, sintering processes, and Li ion transport, which can ultimately lead to higher ionic conductivity ceramic electrolytes.
非技术描述:锂离子电池在笔记本电脑和手机中无处不在,并且在不久的将来可能会在交通应用中得到更多使用。然而,这些电池存在因用于在电池内传输锂离子的易燃液体电解质而产生的安全问题。最有希望的更安全的替代电解质之一是陶瓷锆酸锂镧 (LLZO),它具有良好的热/化学稳定性和离子传输特性。尽管如此,为了提高对 LLZO 几个关键问题以及如何提高其性能的理解,仍然需要进行大量基础研究。该项目研究具有独特纳米级特性的新型 LLZO 纳米线结构和复合材料,可以提高其锂离子传导性并集成到更安全的全固态电池中。该项目还支持教育和外展活动,重点是通过实践经验改善女学生在科学和工程领域的培养和保留,这将增加对工程概念的理解和保留,并激发学生的研究兴趣。通过与电池相关的挑战向当地中学生进行外展活动,为高中生、本科生和研究生提供有关电动汽车问题的背景信息和研究机会。教育工作包括与韩国教师进行教学方法的国际交流,以了解促进女学生成绩的策略,以及如何在以学生为中心的学习环境中最好地吸引来自不同背景的学生。技术细节:该研究项目旨在将作文关联起来使用静电纺丝制备的 LLZO 纳米线材料中的晶界结构和具有离子导电性的晶相。与块体材料相比,纳米线固体电解质可以提供有益且有利的特性,即更温和的结晶煅烧条件、亚稳态相的稳定以及形成核壳复合材料等独特结构的机会。这些特性可以提高离子电导率、烧结能力以及将电解质集成到全固态电池中。纳米线用于了解 LLZO 相稳定性、结晶和烧结过程。核壳纳米线结构用于研究复合材料中的界面特性和传输,以了解如何最大化锂离子的高导电路径并均匀地修改晶界。此外,详细的原位和像差校正透射电子显微镜可用于了解电纺纳米线的结晶、晶界的杂质偏析、纳米线网络中的烧结以及电解质/阴极界面处的相互扩散等过程。该信息与纳米线固体电解质材料的离子电导率和电化学循环测试相关,并与散装材料进行比较。从这项工作中获得的见解能够更好地控制成分、亚稳态相的稳定、烧结过程和锂离子传输,最终可以产生更高离子电导率的陶瓷电解质。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pyrochlore nanocrystals as versatile quasi-single-source precursors to lithium conducting garnets
  • DOI:
    10.1039/d0ta05842d
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Weller;Candace K. Chan
  • 通讯作者:
    J. Weller;Candace K. Chan
Reduction in Formation Temperature of Ta-Doped Lithium Lanthanum Zirconate by Application of Lux–Flood Basic Molten Salt Synthesis
  • DOI:
    10.1021/acsaem.0c00716
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Weller;Candace K. Chan
  • 通讯作者:
    J. Weller;Candace K. Chan
Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries
  • DOI:
    10.1016/j.electacta.2017.08.130
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Chan, Candace K.;Yang, Ting;Weller, J. Mark
  • 通讯作者:
    Weller, J. Mark
Observation of Elemental Inhomogeneity and Its Impact on Ionic Conductivity in Li‐Conducting Garnets Prepared with Different Synthesis Methods
  • DOI:
    10.1002/aesr.202000109
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Weller;Andrew Dopilka;Candace K. Chan
  • 通讯作者:
    J. Weller;Andrew Dopilka;Candace K. Chan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Candace Chan其他文献

Unveiling Mechanical Stress in Lithium-Metal Batteries for Flexible Electronics: A Novel Approach with Optical Techniques and Artificial Interfaces
揭示柔性电子产品锂金属电池中的机械应力:采用光学技术和人工接口的新方法
The element carbon
碳元素

Candace Chan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Candace Chan', 18)}}的其他基金

PFI-TT: Fabrication of Solid Electrolyte Thin Films with Plasma Processing to Enable Solid State Batteries with High Energy Density
PFI-TT:通过等离子体处理制造固体电解质薄膜,以实现高能量密度的固态电池
  • 批准号:
    2234636
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Relationships Between Synthesis, Structure, Solid-State Electrochemistry, and Phase Stability in Clathrates and Related Materials
合作研究:了解包合物和相关材料的合成、结构、固态电化学和相稳定性之间的关系
  • 批准号:
    2004514
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
2018 Professional Development Workshop in Ceramics, Columbus, Ohio
2018 年陶瓷专业发展研讨会,俄亥俄州哥伦布
  • 批准号:
    1833207
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Synthesis, Structural Characterization and Electrochemical Studies of Framework Substituted Germanium and Tin Clathrates
合作研究:骨架取代的锗和锡包合物的合成、结构表征和电化学研究
  • 批准号:
    1710017
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Synthesis and Electrochemical Studies of Intercalated and Framework Substituted Silicon Clathrates
插层和骨架取代的硅包合物的合成和电化学研究
  • 批准号:
    1206795
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

高纬旱区复杂结构性特殊土水敏致灾机理与重大工程灾变防控
  • 批准号:
    42330708
  • 批准年份:
    2023
  • 资助金额:
    231 万元
  • 项目类别:
    重点项目
真实火灾下多层工程竹框架结构损伤演化机理和抗连续倒塌设计方法
  • 批准号:
    52378522
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
反应性微交联弹性体的结构设计及其对工程塑料的增韧研究
  • 批准号:
    52373070
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于“免疫-血管-半月板再生”机制构建负泊松比和结构/细胞双重梯度仿生不同区域的组织工程半月板
  • 批准号:
    82372490
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
心肌特征尺度下几何结构和电刺激调控工程化心肌组织成熟及应用的研究
  • 批准号:
    32301137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
ESTEEMED Scholars Program at the University of Rhode Island
罗德岛大学尊敬的学者计划
  • 批准号:
    10653461
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
  • 批准号:
    10722716
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
2023 RNA Nanotechnology Gordon Research Conference and Seminar
2023年RNA纳米技术戈登研究会议暨研讨会
  • 批准号:
    10598881
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了