Collaborative Research: Understanding Relationships Between Synthesis, Structure, Solid-State Electrochemistry, and Phase Stability in Clathrates and Related Materials
合作研究:了解包合物和相关材料的合成、结构、固态电化学和相稳定性之间的关系
基本信息
- 批准号:2004514
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION:Clathrates are a class of materials with cage-like structures that can naturally hold guest ions, a feature that may be exploited for energy storage in rechargeable batteries. However, more research is needed to understand how the structure of the clathrate affects ion migration and the durability of the material under repeated electrochemical cycling. Through this collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, researchers at Arizona State and University of Delaware jointly identify structural features of the clathrates that promote fast ion diffusion and develop new approaches to synthesize these materials. Thereby they gather new knowledge connecting the structural effects of clathrates and related compounds to their physical, electrochemical, and materials chemistry properties. The fundamental science gained from these studies could have far reaching impacts in other fields where these materials have potential applications, such as superconductors, thermoelectrics, optoelectronics, magnets, and photovoltaics. Additionally, this collaboration between two universities and three different departments (materials science, chemistry, and physics) exposes students to multidisciplinary research. Outreach and educational activities also engage students and provide interdisciplinary training and immerse them into areas outside their immediate field of expertise. TECHNICAL DESCRIPTION:This collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, identifies structural features that lead to fast ion diffusion and obtain better understanding of electrochemically driven phase transformations in Li-Tetrel (Tt) systems, particularly for clathrates and other open framework structures. The specific objectives of the research are to: (1) Understand the structural parameter space for Tt (Tt = Si, Ge, Sn) clathrate and clathrate-like materials with high ionic mobility; (2) Re-map the phase space of Li-Tt systems, including non-equilibrium phases, coupled with studies on understanding the ionic transport within these phases, and (3) Use electrochemistry to inform solid-state synthesis and vice versa, to enable new synthetic approaches for clathrates and related materials that are either intermediates in the lithiation pathways or can be used as precursors for the synthesis steps. Through a concerted approach combining the synthetic, structural and electrochemical characterization, and theoretical expertise of the PIs, this work furthers the electrochemical understanding of clathrate materials, leading to new insights on structural features that result in fast diffusion pathways, low ion migration barriers, and phase stability. Novel synthetic approaches combining high temperature coulometric titration and low temperature flux methods are used to trap kinetic/metastable phases and controllably synthesize high quality single-crystalline materials. Isostructural compounds containing key Li local environments are employed as model compounds to understand the ion (de)insertion processes in Li-Tt binary (and ternary/quaternary) compounds, with an emphasis on Tt = Ge. By means of a unique feedback loop connecting electrochemistry and synthesis, information about phases formed during electrochemical lithiation is used to design novel precursors for synthesis of clathrates, and solid-state reactions using chemical oxidation are adapted to develop electrochemical synthesis methods with finer control over composition. Synchrotron X-ray studies are used to characterize the local and crystalline structures and phase evolution during electrochemical reaction and/or synthesis. In all cases, density functional theory calculations support experimental findings and guide materials design, particularly by identifying formation energies and ionic transport mechanisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:包合物是一类具有笼状结构的材料,可以自然地容纳客体离子,这一特性可用于可充电电池的能量存储。然而,需要更多的研究来了解包合物的结构如何影响离子迁移和材料在重复电化学循环下的耐久性。通过这个合作项目,在美国国家科学基金会材料研究部固态和材料化学项目的支持下,亚利桑那州立大学和特拉华大学的研究人员共同确定了促进快速离子扩散的包合物的结构特征,并开发了合成这些包合物的新方法。材料。由此,他们收集了将包合物和相关化合物的结构效应与其物理、电化学和材料化学性质联系起来的新知识。从这些研究中获得的基础科学可能会对这些材料具有潜在应用的其他领域产生深远的影响,例如超导体、热电、光电子、磁体和光伏。此外,两所大学和三个不同院系(材料科学、化学和物理)之间的合作让学生接触到多学科研究。外展和教育活动还吸引学生并提供跨学科培训,让他们沉浸在其直接专业领域之外的领域。技术描述:该合作项目得到了 NSF 材料研究部固态和材料化学项目的支持,确定了导致快速离子扩散的结构特征,并更好地了解 Li-Tetrel (Tt) 中电化学驱动的相变系统,特别是对于包合物和其他开放框架结构。研究的具体目标是:(1)了解具有高离子迁移率的Tt(Tt=Si、Ge、Sn)笼形和类笼形材料的结构参数空间; (2) 重新绘制 Li-Tt 系统的相空间,包括非平衡相,并结合了解这些相内离子传输的研究,以及 (3) 使用电化学来指导固态合成,反之亦然,以为包合物和相关材料提供新的合成方法,这些材料或者是锂化途径中的中间体,或者可以用作合成步骤的前体。通过将 PI 的合成、结构和电化学表征以及理论专业知识相结合的协调方法,这项工作进一步加深了对笼形材料的电化学理解,从而对结构特征产生了新的见解,从而实现了快速扩散途径、低离子迁移势垒和相位稳定性。采用高温库仑滴定法和低温通量法相结合的新颖合成方法来捕获动力学/亚稳态相并可控地合成高质量的单晶材料。采用含有关键 Li 局域环境的同构化合物作为模型化合物,以了解 Li-Tt 二元(和三元/四元)化合物中的离子(脱)插入过程,重点是 Tt = Ge。通过连接电化学和合成的独特反馈回路,有关电化学锂化过程中形成的相的信息可用于设计用于合成笼形物的新型前体,并且采用化学氧化的固态反应可用于开发对成分进行更精细控制的电化学合成方法。同步加速器 X 射线研究用于表征电化学反应和/或合成过程中的局部和晶体结构以及相演化。在所有情况下,密度泛函理论计算都支持实验结果并指导材料设计,特别是通过确定形成能量和离子传输机制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrochemical Lithium Alloying Behavior of Guest-Free Type II Silicon Clathrates
无客体 II 型硅包合物的电化学锂合金化行为
- DOI:10.1021/acs.jpcc.1c04020
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dopilka, Andrew;Childs, Amanda;Bobev, Svilen;Chan, Candace K.
- 通讯作者:Chan, Candace K.
Solid-State Electrochemical Synthesis of Silicon Clathrates Using a Sodium-Sulfur Battery Inspired Approach
- DOI:10.1149/1945-7111/abdfe5
- 发表时间:2021-02-01
- 期刊:
- 影响因子:3.9
- 作者:Dopilka, Andrew;Childs, Amanda;Chan, Candace K.
- 通讯作者:Chan, Candace K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Candace Chan其他文献
Unveiling Mechanical Stress in Lithium-Metal Batteries for Flexible Electronics: A Novel Approach with Optical Techniques and Artificial Interfaces
揭示柔性电子产品锂金属电池中的机械应力:采用光学技术和人工接口的新方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mayukh Nandy;Siyang Liu;Todd Houghton;Haiwei Wu;Candace Chan;Hongbin Yu - 通讯作者:
Hongbin Yu
The element carbon
碳元素
- DOI:
10.1201/9781315222127-1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Frank Hennirch;Candace Chan;V. Moore;M. Rolandi;M. O'Connel - 通讯作者:
M. O'Connel
Candace Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Candace Chan', 18)}}的其他基金
PFI-TT: Fabrication of Solid Electrolyte Thin Films with Plasma Processing to Enable Solid State Batteries with High Energy Density
PFI-TT:通过等离子体处理制造固体电解质薄膜,以实现高能量密度的固态电池
- 批准号:
2234636 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
2018 Professional Development Workshop in Ceramics, Columbus, Ohio
2018 年陶瓷专业发展研讨会,俄亥俄州哥伦布
- 批准号:
1833207 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: Synthesis, Structural Characterization and Electrochemical Studies of Framework Substituted Germanium and Tin Clathrates
合作研究:骨架取代的锗和锡包合物的合成、结构表征和电化学研究
- 批准号:
1710017 - 财政年份:2017
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
CAREER: Engineering Structure and Ionic Conductivity in Li7La3Zr2O12 Nanowire-Based Solid Electrolytes
职业:Li7La3Zr2O12 纳米线固体电解质的工程结构和离子电导率
- 批准号:
1553519 - 财政年份:2016
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Synthesis and Electrochemical Studies of Intercalated and Framework Substituted Silicon Clathrates
插层和骨架取代的硅包合物的合成和电化学研究
- 批准号:
1206795 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
相似国自然基金
基于场景理解和视觉推理的光电集成芯片表面缺陷检测方法研究
- 批准号:52375499
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向长文本的机器阅读理解关键技术研究
- 批准号:62306040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理解释的深度学习云对流参数化方案研究
- 批准号:42305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant