Understanding the Role of Mechanical Boundary Conditions on Tissue Assembly and Repair in 3D Fibrous Microtissues
了解机械边界条件对 3D 纤维微组织中组织组装和修复的作用
基本信息
- 批准号:2311640
- 负责人:
- 金额:$ 63.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will support research that will generate new knowledge about biological tissue assembly and repair. This work will both promote the progress of science and advance national health. Tissue assembly and repair are the fundamental mechanisms that underly wound healing. It is known that mechanical forces control tissue assembly. However, the mechanisms by which forces regulate new tissue formation and its organization remain poorly understood. Essentially, changing the mechanical forces on a tissue can either promote or suppress wound healing. However, the direct relationship between mechanical forces and wound healing outcomes are largely unknown. This award supports the fundamental research to provide knowledge about how mechanical forces will influence tissue assembly and repair in a tightly controlled laboratory setting. Through establishing a combined experimental and computational platform for measuring the interplay between mechanical, chemical, and biological cues, this research will directly advance the design of engineered devices and therapeutics to promote would healing. Thus, results from this research will benefit the U.S. national health, economy, and society as impaired wound healing is a significant medical problem. Finally, this work will include community outreach at the middle school level to educate students about the exciting field of mechanobiology.The objective of this project is to understand how domain boundary conditions (i.e., the boundary restraints that control emergent ECM alignment and tissue geometry) control local tissue repair (i.e., healing through matrix contractility and matrix deposition) via the induced spatially heterogeneous mechanical microenvironment (i.e., self-assembled fiber alignment, tissue strain, and tissue stress). This work tightly integrates in vitro experiments and computational modeling, where the in vitro experiments build on a previously developed three-dimensional in vitro biomimetic gap closure model of tissue assembly and repair. This work will first establish a mechanistic computational model to predict the heterogeneous stresses and strains of microtissue formed around different micropost configurations. Then, it will integrate the mechanistic computational model with timelapse image based experimental data to form a combined mechanistic and data-driven framework to predict the gap closure process. Finally, this framework will be used to define the transition regime between “gap closure” and “gap closure failure” for this in vitro experimental system. In addition to the knowledge gained about biological tissue assembly and repair, this work will establish a generalizable methodology for integrating mechanistic and data driven computational models for mechanobiological systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持产生有关生物组织组装和修复的新知识的研究,这项工作将促进科学进步并促进国民健康。众所周知,组织组装和修复是伤口愈合的基本机制。然而,对于力调节新组织形成及其组织的机制仍然知之甚少,从本质上讲,改变组织上的机械力可以促进或抑制伤口愈合。然而,机械力和伤口愈合之间的直接关系。结果很大程度上未知。该奖项支持基础研究以提供知识。关于机械力如何在严格控制的实验室环境中影响组织组装和修复,通过建立一个组合的实验和计算平台来测量机械、化学和生物线索之间的相互作用,这项研究将直接推进工程设备和治疗的设计。因此,这项研究的结果将有益于美国国民健康、经济和社会,因为伤口愈合受损是一个重大的医学问题。最后,这项工作将包括在中学层面进行社区宣传,以教育学生有关这一令人兴奋的知识。机械生物学领域的目标该项目的目的是了解域边界条件(即控制紧急 ECM 对齐和组织几何形状的边界约束)如何通过诱导的空间异质机械微环境(即,这项工作紧密结合了体外实验和计算建模,其中体外实验建立在先前开发的三维体外仿生间隙闭合模型的基础上。这项工作将首先建立一个机械计算模型来预测不同微柱配置周围形成的微组织的异质应力和应变,然后将机械计算模型与基于延时图像的实验数据相结合以形成组合机械。最后,除了获得的有关生物学的知识之外,该框架还将用于定义该体外实验系统的“间隙闭合”和“间隙闭合失败”之间的过渡机制。组织组装和这项工作将建立一种通用的方法,用于整合机械生物学系统的机械和数据驱动的计算模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma Lejeune其他文献
Machine Learning-Guided Design of Non-Reciprocal and Asymmetric Elastic Chiral Metamaterials
机器学习引导的非互易和不对称弹性手性超材料设计
- DOI:
10.48550/arxiv.2404.13215 - 发表时间:
2024-04-19 - 期刊:
- 影响因子:0
- 作者:
Lingxiao Yuan;Emma Lejeune;Harold S. Park - 通讯作者:
Harold S. Park
Journal of the Mechanics and Physics of Solids
固体力学与物理学杂志
- DOI:
10.1002/nme.6309 - 发表时间:
2019-07-30 - 期刊:
- 影响因子:2.9
- 作者:
Sotirios Kakaletsis;Emma Lejeune;Manuel Rausch;O. Articleinf - 通讯作者:
O. Articleinf
Understanding geometric instabilities in thin filmsviaa multi-layer model
- DOI:
10.1039/c5sm02082d - 发表时间:
2015-10 - 期刊:
- 影响因子:3.4
- 作者:
Emma Lejeune;Ali Javili;Christian Linder - 通讯作者:
Christian Linder
Matrix architecture and mechanics regulate myofibril organization, costamere assembly, and contractility of engineered myocardial microtissues
基质结构和力学调节肌原纤维组织、肋骨组装和工程心肌微组织的收缩性
- DOI:
10.1101/2023.10.20.563346 - 发表时间:
2023-10-23 - 期刊:
- 影响因子:0
- 作者:
Samuel J. DePalma;Javiera Jillberto;Austin E Stis;Darcy Huang;Jason Lo;Christopher D. Davidson;Aamilah Chowdhury;Maggie E. Jewett;Hiba Kobeissi;Christopher S. Chen;Emma Lejeune;Adam S. Helms;David A. Nordsletten;Brendon M. Baker - 通讯作者:
Brendon M. Baker
Segmenting mechanically heterogeneous domains via unsupervised learning
通过无监督学习分割机械异构领域
- DOI:
10.48550/arxiv.2308.15697 - 发表时间:
2023-08-30 - 期刊:
- 影响因子:3.5
- 作者:
Quan Nguyen;Emma Lejeune - 通讯作者:
Emma Lejeune
Emma Lejeune的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma Lejeune', 18)}}的其他基金
Elements: Curating and Disseminating Solid Mechanics Based Benchmark Datasets
要素:整理和传播基于固体力学的基准数据集
- 批准号:
2310771 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
Collaborative Research: Inferring The In Situ Micro-Mechanics of Embedded Fiber Networks by Leveraging Limited Imaging Data
合作研究:利用有限的成像数据推断嵌入式光纤网络的原位微观力学
- 批准号:
2127864 - 财政年份:2022
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
相似国自然基金
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
- 批准号:72362010
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
骑墙守望还是全力奔赴:基于角色理论的混合创业进入、退出与长期回报研究
- 批准号:72372119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
引流决策下的平台运营: 定位,定价和平台的双重角色
- 批准号:72371038
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
- 批准号:72302099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
- 批准号:
10732733 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Understanding the role of Tmc proteins in hair cell mechanotransduction of zebrafish
了解 Tmc 蛋白在斑马鱼毛细胞机械转导中的作用
- 批准号:
10862032 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别: