FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
基本信息
- 批准号:1523233
- 负责人:
- 金额:$ 10.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to bring together a group of researchers with experience in a broad array of topics in higher dimensional algebraic geometry, in order to make progress in two closely related areas: birational geometry in positive characteristics and the theory of singularities and linear series arising in the minimal model program. While there has been a lot of recent progress in our understanding of the geometry of higher-dimensional varieties, almost all of this body of work is restricted to characteristic zero, due to the use of vanishing theorems that can fail in positive characteristic. The first goal of this collaborative research is to build tools and a framework that would allow the main results in birational geometry to be extended to positive characteristics. This would make systematic use of the recent techniques that have been devised to exploit the Frobenius morphism. A second goal of the project is to further develop the study of invariants of singularities and of linear series, with an eye toward the remaining problems in the minimal model program. There have been many recent advances in this area. In particular, a conjecture of Shokurov asserting that certain invariants of singularities (the log canonical thresholds) satisfy the so-called ACC property has been solved by some of the PIs. This suggests that other related but harder questions might be within reach, questions whose importance comes from the connection with one of the remaining conjectures in the minimal model program, the termination of flips. The PIs propose to attack one of these problems, predicting the ACC property of another invariant, the minimal log discrepancy. In a separate direction, the PIs plan to undertake a systematic study of examples of linear systems on algebraic varieties that exhibit a pathological behavior from the point of view of various positivity invariants.The last ten years have seen major breakthroughs in the study of higher-dimensional algebraic varieties, but several important problems are still open. A central such problem is intimately related to the study of singularities and one of the goals of this project is to make progress on understanding the properties of the invariants of singularities that appear in this setting. Another general goal of the PIs is to develop systematically the study of algebraic varieties of dimension at least 3 in positive characteristic. A lot less is known in this setting, where new phenomena (sometimes considered pathological) arise. The PIs expect that cross-pollination of ideas with other areas, in particular with commutative algebra, will play an important role in making progress in this direction. Moreover, it is likely that techniques and results in this context would have many applications to other fields (for example, in arithmetic geometry). As part of the collaborative effort, the PIs plan several events that will bring together members of the mathematical community working on related problems and also help disseminate the results and the techniques developed as part of this project.
该项目的目标是汇集一组在高维代数几何领域具有广泛主题经验的研究人员,以便在两个密切相关的领域取得进展:正特性的双有理几何以及奇点和线性理论系列出现在最小模型程序中。 虽然我们对高维簇几何的理解最近取得了很多进展,但由于使用了可能在正特征上失败的消失定理,几乎所有这些工作都仅限于特征零。 这项合作研究的首要目标是构建工具和框架,使双有理几何的主要结果能够扩展到积极的特征。 这将系统地利用最近为利用弗罗贝尼乌斯态射而设计的技术。 该项目的第二个目标是进一步发展奇点和线性级数不变量的研究,着眼于最小模型程序中的剩余问题。 该领域最近取得了许多进展。特别是 Shokurov 的一个猜想,即某些奇点不变量(对数正则阈值)满足所谓的 ACC 性质,已被一些 PI 解决。 这表明其他相关但更难的问题可能是可以解决的,这些问题的重要性来自于与最小模型程序中剩余猜想之一(翻转的终止)的联系。 PI 建议解决其中一个问题,预测另一个不变量的 ACC 属性,即最小对数差异。 在一个单独的方向上,PI 计划对代数簇上的线性系统的例子进行系统的研究,这些例子从各种正不变量的角度表现出病态行为。在过去的十年里,高等代数簇的研究取得了重大突破。维代数簇,但几个重要问题仍然悬而未决。 这样的一个核心问题与奇点的研究密切相关,该项目的目标之一是在理解这种情况下出现的奇点不变量的性质方面取得进展。 PI 的另一个总体目标是系统地开展对正特征至少为 3 维的代数簇的研究。 在这种新现象(有时被认为是病态的)出现的环境中,人们所知甚少。 PI 预计,思想与其他领域(尤其是交换代数)的交叉传播将在这一方向取得进展中发挥重要作用。 此外,这种情况下的技术和结果很可能在其他领域(例如算术几何)有许多应用。 作为协作努力的一部分,PI 计划了几项活动,将数学界的成员聚集在一起解决相关问题,并帮助传播作为该项目一部分开发的结果和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James McKernan其他文献
James McKernan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James McKernan', 18)}}的其他基金
Termination and Vector Bundles on Projective Space
射影空间上的终止和向量丛
- 批准号:
1802460 - 财政年份:2018
- 资助金额:
$ 10.64万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265263 - 财政年份:2013
- 资助金额:
$ 10.64万 - 项目类别:
Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
- 批准号:
1064420 - 财政年份:2011
- 资助金额:
$ 10.64万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 10.64万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 10.64万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 10.64万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 10.64万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 10.64万 - 项目类别:
Continuing Grant