Atomic-Scale Observation of Deformation in Nanoscale Body Center Cubic (BCC) Crystals
纳米级体心立方 (BCC) 晶体变形的原子尺度观测
基本信息
- 批准号:1536811
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The metals used in mechanical components for small-scale devices at room temperature are normally of face center cubic character. Their mechanical behavior is generally well-known. However, at high temperature, these FCC metals become soft. Therefore, they are not suitable for high temperature application. In that case, body center cubic (BCC) nanostructured metals offer an alternative. These metals possess potentially desired high temperature strength. They are expected to serve in components in future high temperature device such as micro/nano electro-mechanical systems (MEMS/NMMS). Although the mechanical behavior of large-sized BCC metals is well-known, these macroscale properties cannot be directly used for nanometer-sized structures due to size effects. For the analysis of the small devices, it is necessary to know the mechanical behavior of BCC metals at small scales. However, there is lack of experimental data for the deformation process at small scales, and also there is no understanding of the deformation behavior of BCC metals at the nanometer scale. An in-situ mechanical testing approach inside a special high resolution transmission electron microscope (HRTEM) will be used in this research. This constitutes a new approach for studying the mechanical behavior at atomistic scale for nanometer-sized BCC metal specimens. The understanding of the mechanical behavior of nanometer-sized BCC crystals gained from this research will have direct impact on the design and fabrication of the high temperature MEMS/NEMS. The research on the in-situ HRTEM is expected to open a new approach to directly observe atomic-scaled deformation under mechanical stress. The results from the research are expected to contribute to the advancement of experimental mechanics and nanomaterials. The research will employ an in-situ tensile technique utilizing the most advanced instrument of high resolution transmission electron microscope (HRTEM) to reveal the deformation process in nanometer-sized BCC metal specimens. Firstly, nanometer-sized high strength BCC metal specimens will be fabricated in-situ. Secondly, tensile/compression experiment in-situ in the HRTEM will be conducted on these BCC specimens to documents deformation behavior at room temperature and high temperatures; Thirdly, lattice disturbance, dislocation dipole nucleation and competition between slip and twinning in the deformation process will be observed. Molecular dynamics modeling on key issues with a) dislocation dipole formation; b) nucleation of twinning and dislocation and c) competition of twinning and slip as function of crystal orientation will be carried out. The experiments will be carried out via national user facilities at the Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA. This collaboration will build national research infrastructure.
在室温下用于小型设备的机械组件中使用的金属通常是面部中心立方特征。他们的机械行为通常是众所周知的。但是,在高温下,这些FCC金属变得柔软。因此,它们不适用于高温施用。在这种情况下,人体中心立方(BCC)纳米结构金属提供了替代方案。 这些金属具有潜在所需的高温强度。预计它们将在未来的高温设备中的组件中使用,例如微型/纳米机电系统(MEMS/NMMS)。尽管大型BCC金属的机械行为是众所周知的,但由于尺寸效应,这些宏观特性不能直接用于纳米尺寸的结构。为了分析小型设备,有必要了解BCC金属在小尺度上的机械行为。但是,在小尺度上缺乏变形过程的实验数据,而且对BCC金属在纳米尺度上的变形行为也没有理解。本研究将使用特殊高分辨率透射电子显微镜(HRTEM)内的原位机械测试方法。这构成了一种研究纳米尺寸BCC金属标本在原子量表上的机械行为的新方法。从这项研究中获得的纳米尺寸BCC晶体的机械行为的理解将直接影响高温MEM/NEM的设计和制造。预计对原位HRTEM的研究将打开一种新方法,以直接观察机械应力下的原子尺度变形。研究的结果预计将有助于实验力学和纳米材料的发展。该研究将利用高分辨率透射电子显微镜(HRTEM)的最先进的仪器采用原位拉伸技术来揭示纳米尺寸BCC金属标本中的变形过程。首先,纳米尺寸的高强度BCC金属标本将在原位制造。其次,HRTEM中的原位拉伸/压缩实验将在这些BCC标本上进行,以记录室温和高温下的变形行为;第三,将观察到变形过程中的晶格干扰,脱位偶极子核和滑移与孪生之间的竞争。分子动力学建模在a)脱位偶极子形成的关键问题上建模; b)双胞胎和脱位的成核以及c)将进行双胞胎和滑移作为晶体取向的功能的竞争。该实验将通过华盛顿州Richland的Pacific Northwest National Laboratory的环境分子科学实验室(EMSL)的国家用户设施进行。这项合作将建立国家研究基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Mao其他文献
Scott Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Mao', 18)}}的其他基金
Nanoscale Characterization of Nanostructured Thin Film with Ultrahigh Strength and Ductility
具有超高强度和延展性的纳米结构薄膜的纳米级表征
- 批准号:
0928517 - 财政年份:2009
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Integrated Experiment and Atomistic Computation on Moisture-Induced Interfacial Embrittlement
湿致界面脆化综合实验与原子计算
- 批准号:
0825842 - 财政年份:2008
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Nanomechanics on deformation processes in nanocrystalline materials
纳米晶材料变形过程的纳米力学
- 批准号:
0625733 - 财政年份:2006
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Nanoscaled deformation and fracture processes in nanolayers
纳米层中的纳米级变形和断裂过程
- 批准号:
0140317 - 财政年份:2002
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
相似国自然基金
面向网约平台的大规模农机协同调度优化研究
- 批准号:72301036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
- 批准号:52377095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
- 批准号:62376135
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向大规模高维数据的高效相似性检索方法研究
- 批准号:62302110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
- 批准号:62371125
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Molecular-scale Observation of Heterogeneous Crosslinked Structures and Local Deformation and Fracture Mechanisms of Epoxy Resin
环氧树脂异质交联结构及局部变形和断裂机制的分子尺度观察
- 批准号:
23H02017 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Atomic-scale observation of interface ionics by cooling
通过冷却对界面离子进行原子尺度观察
- 批准号:
22K04927 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing Irradiation Hardening Mechanisms by a new in-situ observation method with sub-nm scale resolution
通过亚纳米级分辨率的新原位观察方法揭示辐照硬化机制
- 批准号:
20H00359 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
: In situ observation of atomic scale twinning Process in HCP Crystals
: 原位观察 HCP 晶体原子级孪生过程
- 批准号:
1808046 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
In-situ Atomic-Scale Observation on Interface Formation and Friction
界面形成和摩擦的原位原子尺度观察
- 批准号:
1824816 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Standard Grant