: In situ observation of atomic scale twinning Process in HCP Crystals

: 原位观察 HCP 晶体原子级孪生过程

基本信息

  • 批准号:
    1808046
  • 负责人:
  • 金额:
    $ 43.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYPlastic deformation plays a crucial role in mechanical behaviors of crystals. Particularly, where the atoms are arranged in the pattern of hexagons, called hexagonal close packed metals and alloys such as magnesium or titanium-based alloys, twinning (two separate crystals having the same structure in a symmetrical manner) is an important type of plastic deformation, which critically influences the mechanical behaviors such as ductility, strength, work hardening, and fracture. As such, twinning has to be understood and controlled for designing and processing the hexagonal close packed metals and alloys. However, this has been impeded by the elusive understanding of atomic scaled mechanisms of twinning processes in the metals. Despite tremendous research efforts, for decades, how atom movements influence the mechanism of twinning remains poorly understood. The proposed research will employ high resolution transmission electron microscopy to investigate atomic-scale twinning processes in the materials, providing in-depth understanding on the role of atom movement in twinning of complex crystal structures. The project will provide important guidance for twinning-based alloy design and processing for achieving superior mechanical properties. Thereby, it will advance the application of light metal-based structures. The program will integrate research and education through training graduate/undergraduate students with diverse demographic backgrounds (particularly, female and minority) and their participation in national laboratories as well as outreach to elementary school through Pittsburgh Carnegie Science Museum.TECHNICAL SUMMARYTwinning plays a crucial role in mechanical behaviors of crystals. Particularly, in hexagonal close packed (HCP) metals and alloys, twinning, in addition to dislocation slip, can be profusely activated and critically influences their ductility, strength, work hardening, texture formation and fracture, primarily because twinning can carry deformation along the c axis of the HCP crystal where dislocation plasticity is limited. As such, twinning has to be controlled for designing and processing HCP alloys with improved mechanical properties. However, this has been impeded by the elusive understanding of atomic scaled mechanisms of twinning nucleation and growth in HCP crystals. In twinning, a part of the parent lattice is reoriented and the product lattice is mirrored by the parent about the twinning plane. Classically, such a lattice reorientation is achieved by a homogeneous simple shear which carries all or a fraction of the lattice points to the twin. The shear is mediated by coordinated movement of twinning dislocations on the twinning plane. The classical description of deformation twinning has been validated extensively in cubic structures. A significant difference in twinning of double-lattice structures, such as HCP, is that a twinning shear cannot carry all the parent lattice points to the twin positions. As a result, additional atomic movements, called shuffles, are required to accomplish twinning. Despite tremendous research efforts, for decades, how atom shuffles influence the mechanism of twinning remains poorly understood. Atomically-resolved direct experimental investigation are necessary for exploring the actual atomic shuffle and shear during twinning nucleation and growth, and hence obtaining a fundamental understanding on twinning mechanisms in HCP crystals. The proposed research will employ state-of-the-art in situ high resolution transmission electron microscopy (HRTEM) to investigate atomic-scale twinning processes in HCP crystals, such as twinning nucleation, growth and pertinent transformations as well as the orientation-dependent competition between dislocation plasticity and twinning at atomic resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要塑性变形在晶体的机械行为中起着至关重要的作用。特别是,当原子以六边形图案排列时,称为六方密堆积金属和合金,例如镁或钛基合金,孪晶(两个单独的晶体以对称方式具有相同的结构)是一种重要的塑性变形类型,它严重影响延展性、强度、加工硬化和断裂等机械行为。因此,在设计和加工六方密堆积金属和合金时必须理解和控制孪晶。然而,对金属孪生过程的原子尺度机制的难以理解阻碍了这一进程。尽管进行了大量的研究工作,但几十年来,人们对原子运动如何影响孪生机制仍然知之甚少。拟议的研究将采用高分辨率透射电子显微镜来研究材料中的原子级孪生过程,深入了解原子运动在复杂晶体结构孪生中的作用。该项目将为孪晶合金设计和加工提供重要指导,以实现卓越的机械性能。从而,将推动轻金属基结构的应用。该计划将通过培训具有不同人口背景(特别是女性和少数族裔)的研究生/本科生、让他们参与国家实验室以及通过匹兹堡卡内基科学博物馆向小学进行推广,将研究和教育结合起来。技术摘要结对在以下方面发挥着至关重要的作用:晶体的力学行为。特别是,在六方密排 (HCP) 金属和合金中,除了位错滑移之外,孪生也可以被大量激活,并严重影响其延展性、强度、加工硬化、织构形成和断裂,主要是因为孪生可以沿 c 方向进行变形。位错塑性受到限制的 HCP 晶体轴。因此,必须控制孪晶以设计和加工具有改进机械性能的 HCP 合金。然而,由于对 HCP 晶体中孪晶成核和生长的原子尺度机制的难以理解,这一点受到了阻碍。在孪晶中,母体晶格的一部分被重新定向,并且产物晶格被母体围绕孪晶平面镜像。传统上,这种晶格重新取向是通过均匀简单剪切来实现的,该剪切将全部或部分晶格点带到孪晶。剪切是通过孪生平面上孪生位错的协调运动来调节的。变形孪生的经典描述已在立方结构中得到广泛验证。双晶格结构(例如 HCP)孪生的一个显着差异是孪生剪切不能将所有母晶格点带到孪生位置。因此,需要额外的原子运动(称为洗牌)来完成孪生。尽管进行了大量的研究工作,但几十年来,人们对原子洗牌如何影响孪生机制仍然知之甚少。原子分辨的直接实验研究对于探索孪生成核和生长过程中实际的原子洗牌和剪切是必要的,从而获得对 HCP 晶体孪生机制的基本了解。拟议的研究将采用最先进的原位高分辨率透射电子显微镜(HRTEM)来研究 HCP 晶体中的原子级孪生过程,例如孪生成核、生长和相关转变以及取向相关的竞争位错可塑性和原子分辨率孪晶之间的关系。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals
  • DOI:
    10.1038/s41467-020-16351-0
  • 发表时间:
    2020-05-18
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    He, Yang;Li, Bin;Mao, Scott X.
  • 通讯作者:
    Mao, Scott X.
Revealing shear-coupled migration mechanism of a mixed tilt-twist grain boundary at atomic scale
  • DOI:
    10.1016/j.actamat.2023.119237
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Zheng Fang;Boyang Li;Susheng Tan;S. Mao;Guofeng Wang
  • 通讯作者:
    Zheng Fang;Boyang Li;Susheng Tan;S. Mao;Guofeng Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guofeng Wang其他文献

Hypokalemic periodic paralysis induced by thymic hyperplasia and relieved by thymectomy.
胸腺增生引起的低钾性周期性麻痹,通过胸腺切除术缓解。
  • DOI:
    10.1001/jamaneurol.2013.3918
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    29
  • 作者:
    Ren;K. Jurkat;Jin Cao;Guofeng Wang;H. Seelig;Changping Yang;Guibao Liu;Lin Pan;Haiyan Zheng;F. Lehmann
  • 通讯作者:
    F. Lehmann
Mechanistic modeling of oblique cutting considering fracture toughness and thermo-mechanical properties
考虑断裂韧性和热机械性能的倾斜切削机理建模
Adaptive RBF neural network controller design for SRM drives
SRM 驱动器的自适应 RBF 神经网络控制器设计
A lightweight intrusion detection system for internet of vehicles based on transfer learning and MobileNetV2 with hyper-parameter optimization
基于迁移学习和超参数优化MobileNetV2的轻量级车联网入侵检测系统
  • DOI:
    10.1007/s11042-023-15771-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingqing Wang;G. Qin;Mi Zou;Yanhua Liang;Guofeng Wang;Kunpeng Wang;Yao Feng;Zizhan Zhang
  • 通讯作者:
    Zizhan Zhang
A versatile salicylic acid precursor method for preparing titanate microspheres
一种通用的水杨酸前体制备钛酸盐微球的方法
  • DOI:
    10.1007/s40843-015-0029-2
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Liu;Yang Qu;Wei Zhou;Zhiyu Ren;Baojiang Jiang;Guofeng Wang;Le Jiang;Fulong Yuan;Honggang Fu
  • 通讯作者:
    Honggang Fu

Guofeng Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guofeng Wang', 18)}}的其他基金

Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
  • 批准号:
    1905572
  • 财政年份:
    2019
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Nitrogen Coordinated Single Atomic Metal Electrocatalysts for Selective CO2 Reduction to CO
合作研究:设计氮配位单原子金属电催化剂用于选择性将 CO2 还原为 CO
  • 批准号:
    1804534
  • 财政年份:
    2018
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
In-situ Atomic-Scale Observation on Interface Formation and Friction
界面形成和摩擦的原位原子尺度观察
  • 批准号:
    1824816
  • 财政年份:
    2018
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Atomistic Mechanisms of Surface- and Interface-Mediated Creep in Small-sized Metals
小尺寸金属表面和界面介导蠕变的原子机制
  • 批准号:
    1760916
  • 财政年份:
    2018
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Understanding and Predicting Properties and Performance of Additively Manufactured Nickel-Based Superalloys
了解和预测增材制造镍基高温合金的特性和性能
  • 批准号:
    1662615
  • 财政年份:
    2017
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Atomistic Simulation Investigation on Processing-Structure-Property Relation of Magnetic Metal Alloy Nanostructures
磁性金属合金纳米结构加工-结构-性能关系的原子模拟研究
  • 批准号:
    1410597
  • 财政年份:
    2014
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Continuing Grant

相似国自然基金

fcc/bcc沉淀相变系统相界面的精细结构及迁移过程的实验及理论研究
  • 批准号:
    51471097
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
蛋白质晶体生长的微观机理研究
  • 批准号:
    30400064
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    青年科学基金项目
原子力显微镜对肿瘤细胞膜表面受体结构的纳米水平观察
  • 批准号:
    30371615
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目
癌细胞膜表面结构的纳米水平观察
  • 批准号:
    30171036
  • 批准年份:
    2001
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
金属材料结构与缺陷的计算模拟与原子尺度直接观察
  • 批准号:
    59831020
  • 批准年份:
    1998
  • 资助金额:
    90.0 万元
  • 项目类别:
    重点项目

相似海外基金

Research on the lubrication mechanism of ionic liquids as lubricant additives using in-situ observation
原位观察研究离子液体作为润滑添加剂的润滑机理
  • 批准号:
    21J13315
  • 财政年份:
    2021
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Revealing Irradiation Hardening Mechanisms by a new in-situ observation method with sub-nm scale resolution
通过亚纳米级分辨率的新原位观察方法揭示辐照硬化机制
  • 批准号:
    20H00359
  • 财政年份:
    2020
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
In-situ nonlinear Raman spectroscopic observation of nuclear spin conversion process of molecular hydrogen on the surface of interstellar dust
星际尘埃表面氢分子核自旋转换过程的非线性拉曼光谱原位观测
  • 批准号:
    20K22540
  • 财政年份:
    2020
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Chemical evolution induced by water -in situ observation of formation of prebiotic RNA by high-resolution AFM-
水诱导的化学演化 - 通过高分辨率 AFM 原位观察益生元 RNA 的形成 -
  • 批准号:
    19H02015
  • 财政年份:
    2019
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
In situ AFM Observation of a Polymer Droplet Spreading on a Substrate at the Molecular Level
在分子水平上原位 AFM 观察聚合物液滴在基材上的铺展
  • 批准号:
    18H02025
  • 财政年份:
    2018
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了