PFI:BIC - Cyber-Physical Service System for 3D-Printing of Adaptive Custom Orthoses

PFI:BIC - 用于自适应定制矫形器 3D 打印的网络物理服务系统

基本信息

项目摘要

This Partnership for Innovation: Building Innovation Capacity (PFI:BIC) project aims to develop a service system for Internet-based design and rapid manufacturing of foot orthoses and ankle-foot orthoses with custom fit and motion sensors. Orthoses are externally applied assistive devices that meet the personal needs of people with disabilities. They are designed to achieve one or more of the following goals: control of biomechanical alignment, correction or accommodation of deformity, and/or protection and support of an injury. Custom-made orthoses provide a better fit for users. They are more comfortable and facilitate more effective treatment. However, the traditional plaster molding fabrication method for custom orthoses requires a long delivery time and multiple visits to the clinic, which are often physically, mentally, and/or financially difficult for users of orthoses and their caregivers. The service system is targeted for the One-Day Visit by facilitating the measurement, design, fabrication, and evaluation of foot orthoses and ankle-foot orthoses all within the same day of the patient's visit to the clinic. The current custom orthoses design also lacks both the adaptability to adjust the stiffness for individual needs and the sensors to measure and record the motion data for clinicians and users. This project plans on creating a cyber-physical service system aimed to fulfill these needs. The projected service system utilizes cloud-based design and 3D-printing, a rapid manufacturing technique for custom orthoses, to enable the One-Day Visit. For this system, the clinician scans the foot and leg of the patient and uploads the geometrical and clinical prescription data to a cloud-based Cyber Design Center, which has the biomechanical models, baseline inertia measurement unit (IMU) sensor data, and a user-in-the-loop framework developed in this project to design the user-adaptive, sensor-embedded custom orthoses. Advanced lightweight, energy-efficient motion sensors measure and record the orthosis motion in the living environment for a week. While recharging the battery of the IMU data logger, the subject's motion data are uploaded to a cloud database and analyzed for evaluation of the gait and orthosis functions for the user. This research connects three key aspects of the fused deposition modeling (FDM) for fabrication of custom orthoses: the measurement of defects using nano-computed tomography, prediction of plastic material properties based on the defect geometry, and FDM process optimization. The ruled-based biomechanical decision-support model that can automatically design the shape of custom foot and ankle-foot orthoses based on user information and clinician prescription is studied for orthosis design practice. The development of a user-based optimization framework with long-term motion data of a user as the input will advance the scientific knowledge of user-in-the-loop design and control of assistive devices. This cyber-physical service system for custom orthoses presents a vision wherein the cloud-based design and 3D-printing technologies can harmonize with healthcare by providing a better service for assistive device users and their caregivers. The efficacy of treatment and the quality-of-life of people with disabilities can be improved by having comfortable and adaptable orthoses delivered in a timely fashion.The lead institution, University of Michigan (Ann Arbor, Michigan), is partnering with Stratasys (Eden Prairie, Minnesota) and Altair (Troy, Michigan) in this project. The University of Michigan offers extensive research innovations in optimizing internal structures for 3D-printed porous structure, novel passive dynamic orthosis design, using motion sensors for gait analysis, and user-in-the-loop design and control. Stratasys, a pioneer and leader in FDM machines and materials, will partner to provide the state-of-the-art FDM technology. Altair has cloud-based product design center expertise, which includes all the associated software, hardware, and security infrastructure. Broader Context partners include Becker Orthopedic (Troy, Michigan); University of Michigan Orthotics and Prosthetics Center (Ann Arbor, Michigan); and VA Ann Arbor Health System (Ann Arbor, Michigan).
这种创新合作伙伴关系:建筑创新能力(PFI:BIC)项目旨在开发一种服务系统,用于基于Internet的设计和快速制造具有自定义拟合和运动传感器的脚踝矫形器和脚踝矫形器。 矫形器是外部应用的辅助设备,可满足残疾人的个人需求。 它们旨在实现以下一个或多个目标:控制畸形的生物力学比对,校正或适应性以及/或保护和支持伤害的支持。 定制的矫形器为用户提供了更好的适合。它们更舒适,可以促进更有效的治疗。 但是,用于定制矫形器的传统石膏制造方法需要长时间的分娩时间和多次访问,这对于矫形器及其护理人员的用户来说通常在身体,精神和/或经济上很难。该服务系统是针对一日访问的目标,它通过促进了脚矫形器和脚踝脚踝矫形器的测量,设计,制造和评估。 当前的自定义矫形器设计还缺乏适应性的能力来调整个人需求的刚度,也缺乏传感器来测量和记录临床医生和用户的运动数据。 该项目计划创建一个旨在满足这些需求的网络物理服务系统。 预计的服务系统利用基于云的设计和3D打印(一种用于定制矫形器的快速制造技术)来实现一日访问。 对于该系统,临床医生扫描患者的脚和腿,并将几何和临床处方数据上传到基于云的网络设计中心,该中心具有生物力学模型,基线惯性测量单元(IMU)传感器数据和用户 - 在此项目中开发的循环框架,旨在设计用户自适应,传感器安装的自定义矫形器。 先进的轻质,节能运动传感器测量并记录了一个星期中的矫形器运动。 在为IMU数据记录器的电池充电时,将受试者的运动数据上传到云数据库,并分析以评估用户的步态和矫形器功能。 这项研究连接了用于制造自定义矫形器的融合沉积建模(FDM)的三个关键方面:使用纳米计算的层析成像测量缺陷,基于缺陷几何形状对塑料材料的预测和FDM过程优化。 根据用户信息和临床医生的处方,可以自动设计基于统治的生物力学决策模型,该模型可以自动设计自定义脚和脚踝矫形器的形状,以进行矫形器设计实践。使用用户的长期运动数据开发基于用户的优化框架,因为输入将提高对用户在循环设计的科学知识和辅助设备的控制。这种用于自定义矫形器的网络物理服务系统提出了一个愿景,其中基于云的设计和3D打印技术可以通过为辅助设备用户及其护理人员提供更好的服务来与医疗保健协调。 通过及时提供舒适和适应性的矫形器,可以改善治疗和残疾人生活质量的功效。领导机构,密歇根大学(密歇根州安阿伯市)与Stratasys合作(Eden)大草原,明尼苏达州)和阿尔泰尔(密歇根州特洛伊)。 密歇根大学提供了广泛的研究创新,可利用运动传感器进行步态分析以及在环上的设计和控制方面优化3D打印多孔结构,新型的被动动态矫形器设计的内部结构。 FDM机器和材料的先驱和领导者Stratasys将合作提供最先进的FDM技术。 Altair具有基于云的产品设计中心专业知识,其中包括所有相关的软件,硬件和安全基础架构。 更广泛的背景伙伴包括贝克尔骨科(密歇根州特洛伊);密歇根大学矫正与假肢中心(密歇根州安阿伯);和VA Ann Arbor Health System(密歇根州Ann Arbor)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Albert Shih其他文献

Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
用于活检针插入研究的刀片斜切组织
Effects of needle inner surface topography on friction and biopsy length
针内表面形貌对摩擦力和活检长度的影响
  • DOI:
    10.1016/j.ijmecsci.2016.11.005
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Weisi Li;Ping Zhou;Wei-Chen Lin;Valens Nteziyaremye;Hitomi Yamaguchi;Dongming Guo;Albert Shih
  • 通讯作者:
    Albert Shih
Effects of saline submersion at body temperature on airway supportive devices including a novel nasopharyngeal device produced using 3D-printing.
体温下的盐水浸没对气道支持装置(包括使用 3D 打印生产的新型鼻咽装置)的影响。
  • DOI:
    10.1016/j.amjoto.2024.104366
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Sarah A. Raven;Nathan T. Montgomery;Alyssa S. Chen;Zahra Nourmohammadi;Jeffrey Plott;Albert Shih;Prabhat Koppera;David A. Zopf
  • 通讯作者:
    David A. Zopf

Albert Shih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Albert Shih', 18)}}的其他基金

IRES Track I: Model-Based Design, 3D-Printing, and Evaluation of Assistive Devices
IRES 轨道 I:基于模型的设计、3D 打印和辅助设备评估
  • 批准号:
    1827075
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaboration in Modeling the Grinding of Silicon Carbide Fiber Reinforced Silicon Carbide Ceramic Matrix Composite
碳化硅纤维增强碳化硅陶瓷基复合材料磨削建模的协作
  • 批准号:
    1903506
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Planning Grant: NSF Engineering Research Center for Smart Personalized Assistive Devices and Enabling Systems (SPADES)
规划拨款:NSF 智能个性化辅助设备和支持系统工程研究中心 (SPADES)
  • 批准号:
    1936949
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
EAGER/Cybermanufacturing: A Cloud-Based Additive Manufacturing and Quality System for Custom Orthoses and Prostheses
EAGER/Cyber​​manufacturing:用于定制矫形器和假肢的基于云的增材制造和质量系统
  • 批准号:
    1547073
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
GOALI: Next-Generation Energy-Efficient Minimum Quantity Lubrication Deep Hole Drilling
GOALI:下一代节能微量润滑深孔钻削
  • 批准号:
    1327316
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Needles with High Inclination Angle Cutting Edge and Polished Surfaces for High Performance Biopsy
合作研究:用于高性能活检的具有高倾角切削刃和抛光表面的针
  • 批准号:
    1266063
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanical Material Removal Processes for Biological Tissue in Cardiovascular Procedures
合作研究:心血管手术中生物组织的机械材料去除过程
  • 批准号:
    1232683
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
I-Corps: Mechatronic Back Brace Commercial Development
I-Corps:机电一体化背撑商业开发
  • 批准号:
    1242797
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Multidisciplinary Engineering Capstone Design on Geriatric Assistive Devices and Systems (GADS)
老年辅助设备和系统 (GADS) 的多学科工程顶点设计
  • 批准号:
    0853936
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Fundamental Understanding of Advanced Minimum Quantity Lubrication (MQL) Machining using Nanolubricants
合作研究:使用纳米润滑剂进行先进微量润滑 (MQL) 加工的设计和基本理解
  • 批准号:
    0927511
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

商业银行不当行为风险传染的路径、机理与治理——基于员工社会网络的研究
  • 批准号:
    72371125
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
债券投资如何影响商业银行系统性风险——基于系统性风险“冲击—传染”二元生成机制的视角
  • 批准号:
    71903136
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
考虑系统要素相关性的DEA效率评价方法及在商业银行中的应用研究
  • 批准号:
    71801075
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
大数据环境下网络服务组织的绩效评价方法及在商业银行中的应用研究
  • 批准号:
    71701111
  • 批准年份:
    2017
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于业务流程复杂网络的中国商业银行操作风险控制研究
  • 批准号:
    71373171
  • 批准年份:
    2013
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

トロイダル双極子とBICの融合による近赤外光完全吸収シリコンメタ表面の実現
通过环形偶极子与BIC融合实现完全吸收近红外光的硅超表面
  • 批准号:
    24KJ1687
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
  • 批准号:
    10931181
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
BIC
商业银行
  • 批准号:
    640144
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative R&D
Biomolecular sensing in all-dielectric metasurfaces with collective resonances
具有集体共振的全介电超表面中的生物分子传感
  • 批准号:
    22K20496
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Dynamique des populations de botryches (Botrychium spp) au parc national du Bic
比克国家公园的贵腐菌 (Botrychium spp) 种群动态
  • 批准号:
    564767-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了