Collaboration in Modeling the Grinding of Silicon Carbide Fiber Reinforced Silicon Carbide Ceramic Matrix Composite
碳化硅纤维增强碳化硅陶瓷基复合材料磨削建模的协作
基本信息
- 批准号:1903506
- 负责人:
- 金额:$ 45.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced materials which can maintain structural strength at high temperature are critically important for the energy efficiency and reliability of the aircraft engines and power generation turbines. The silicon carbide fiber reinforced silicon carbide (SiCf/SiC) is a new generation of material for such high temperature applications. Grinding using diamond abrasive is the final finishing manufacturing processes to achieve the part accuracy and surface integrity. The high-speed contact between the diamond abrasive and the brittle SiCf/SiC material during grinding may generate surface cracks, which will greatly affect the strength and reliability of SiCf/SiC components. Modeling brittle composite materials, to isolate processing conditions where fracture does not occur, is difficult using conventional approaches due to the small size of the reinforcing fibers (diameter about 10 microns) with respect to the bulk material. This research focuses on verifying the feasibility and limitations of using an alternative modeling approach to accurately predict the crack formation and find the damage-free grinding conditions for diamond grinding of SiCf/SiC. If successful the project's modelling approach can be applied to other ceramic reinforced materials and increase the competitiveness of US manufacturing companies servicing aerospace, defense, and energy industries. This research will be conducted in close collaboration with the Laboratory of Machine Tools and Production Engineering, an international leader in grinding research, at RWTH Aachen University in Germany, and aerospace industries within the US. While NSF is only supporting the research conducted in the US, this project enables US researchers to leverage research facilities not available in the US for the benefit of US industries and manufacturing interests. Students engaged on the project will be exposed to international perspectives, and research practices at other esteemed institutes enhancing their workforce readiness. Research findings will also be adopted in the curriculum of manufacturing courses to benefit a broad group of students and inspire the next generation of engineers. This research investigates the ability of the smoothed particle hydrodynamics (SPH) modelling approach to model and gain fundamental understanding of the material removal and damage mechanisms in SiCf/SiC grinding. A comprehensive experimental program will be used to evaluate the modeling outcomes and isolate model limitations. SPH is a particle-based, mesh-free simulation method developed to address technical challenges including the large negative rake angle cutting edge, random orientation and distribution of diamond grains, and large strain and high strain rate deformation and fracture of the SiC fiber, fiber-matrix interface, and matrix. The single grain diamond scratching of SiCf/SiC will first be studied through experiments and SPH modeling to identify SiC material models and SPH techniques. The multi-grain experiment and SPH modeling of the grinding of SiCf/SiC will then be carried out. The damage mechanisms will be investigated to isolate the damage-free diamond grinding conditions for SiCf/SiC. In summary, this research will advance the tools available to gain insights into fundamental knowledge of material removal and damage mechanisms in diamond scratching and grinding of SiCf/SiC and other ceramic matrix reinforced composites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够在高温下保持结构强度的先进材料对于飞机发动机和发电涡轮机的能源效率和可靠性至关重要。 碳化硅纤维增强碳化硅(SiCf/SiC)是用于此类高温应用的新一代材料。 使用金刚石磨料进行磨削是最终的精加工制造工艺,以实现零件精度和表面完整性。 磨削过程中金刚石磨料与脆性SiCf/SiC材料的高速接触可能会产生表面裂纹,这将极大地影响SiCf/SiC部件的强度和可靠性。 由于增强纤维相对于散装材料的尺寸较小(直径约 10 微米),因此使用传统方法很难对脆性复合材料进行建模,以隔离不会发生断裂的加工条件。本研究的重点是验证使用替代建模方法准确预测裂纹形成的可行性和局限性,并找到金刚石磨削 SiCf/SiC 的无损伤磨削条件。 如果成功,该项目的建模方法可以应用于其他陶瓷增强材料,并提高服务于航空航天、国防和能源行业的美国制造公司的竞争力。这项研究将与德国亚琛工业大学磨削研究领域国际领先的机床和生产工程实验室以及美国航空航天工业密切合作进行。虽然 NSF 仅支持在美国进行的研究,但该项目使美国研究人员能够利用美国没有的研究设施,为美国工业和制造业利益造福。 参与该项目的学生将接触国际视角和其他知名机构的研究实践,从而增强他们的劳动力准备。 研究成果也将被纳入制造课程的课程中,以造福广大学生并激励下一代工程师。本研究调查了平滑颗粒流体动力学 (SPH) 建模方法的能力,以对 SiCf/SiC 磨削中的材料去除和损坏机制进行建模并获得基本了解。 将使用全面的实验程序来评估建模结果并隔离模型的局限性。 SPH是一种基于粒子、无网格的模拟方法,旨在解决碳化硅纤维、纤维的大负前角切削刃、金刚石晶粒的随机取向和分布、大应变和高应变率变形和断裂等技术挑战。 -矩阵接口和矩阵。 首先通过实验和 SPH 建模研究 SiCf/SiC 的单晶金刚石划痕,以确定 SiC 材料模型和 SPH 技术。随后将进行SiCf/SiC磨削的多晶粒实验和SPH建模。 将研究损伤机制,以确定 SiCf/SiC 的无损伤金刚石磨削条件。 总之,这项研究将改进可用于深入了解 SiCf/SiC 和其他陶瓷基增强复合材料的金刚石划痕和磨削中材料去除和损伤机制的基础知识的工具。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experiment and smooth particle hydrodynamic modeling of single-grain diamond scribing of silicon carbide fiber reinforced silicon carbide (SiCf/SiC)
- DOI:10.1016/j.cirp.2023.04.067
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Hansen Li;S. Prinz;Yao Liu;P. Mattfeld;A. Shih
- 通讯作者:Hansen Li;S. Prinz;Yao Liu;P. Mattfeld;A. Shih
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Shih其他文献
Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
用于活检针插入研究的刀片斜切组织
- DOI:
- 发表时间:
2009-11 - 期刊:
- 影响因子:0
- 作者:
Haojun Zheng;Jason Z. Moore;Albert Shih - 通讯作者:
Albert Shih
Effects of saline submersion at body temperature on airway supportive devices including a novel nasopharyngeal device produced using 3D-printing.
体温下的盐水浸没对气道支持装置(包括使用 3D 打印生产的新型鼻咽装置)的影响。
- DOI:
10.1016/j.amjoto.2024.104366 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Sarah A. Raven;Nathan T. Montgomery;Alyssa S. Chen;Zahra Nourmohammadi;Jeffrey Plott;Albert Shih;Prabhat Koppera;David A. Zopf - 通讯作者:
David A. Zopf
Effects of needle inner surface topography on friction and biopsy length
针内表面形貌对摩擦力和活检长度的影响
- DOI:
10.1016/j.ijmecsci.2016.11.005 - 发表时间:
2016-12 - 期刊:
- 影响因子:7.3
- 作者:
Weisi Li;Ping Zhou;Wei-Chen Lin;Valens Nteziyaremye;Hitomi Yamaguchi;Dongming Guo;Albert Shih - 通讯作者:
Albert Shih
Albert Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert Shih', 18)}}的其他基金
IRES Track I: Model-Based Design, 3D-Printing, and Evaluation of Assistive Devices
IRES 轨道 I:基于模型的设计、3D 打印和辅助设备评估
- 批准号:
1827075 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Planning Grant: NSF Engineering Research Center for Smart Personalized Assistive Devices and Enabling Systems (SPADES)
规划拨款:NSF 智能个性化辅助设备和支持系统工程研究中心 (SPADES)
- 批准号:
1936949 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
PFI:BIC - Cyber-Physical Service System for 3D-Printing of Adaptive Custom Orthoses
PFI:BIC - 用于自适应定制矫形器 3D 打印的网络物理服务系统
- 批准号:
1534003 - 财政年份:2015
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
EAGER/Cybermanufacturing: A Cloud-Based Additive Manufacturing and Quality System for Custom Orthoses and Prostheses
EAGER/Cybermanufacturing:用于定制矫形器和假肢的基于云的增材制造和质量系统
- 批准号:
1547073 - 财政年份:2015
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
GOALI: Next-Generation Energy-Efficient Minimum Quantity Lubrication Deep Hole Drilling
GOALI:下一代节能微量润滑深孔钻削
- 批准号:
1327316 - 财政年份:2014
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Collaborative Research: Needles with High Inclination Angle Cutting Edge and Polished Surfaces for High Performance Biopsy
合作研究:用于高性能活检的具有高倾角切削刃和抛光表面的针
- 批准号:
1266063 - 财政年份:2013
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Collaborative Research: Mechanical Material Removal Processes for Biological Tissue in Cardiovascular Procedures
合作研究:心血管手术中生物组织的机械材料去除过程
- 批准号:
1232683 - 财政年份:2012
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
I-Corps: Mechatronic Back Brace Commercial Development
I-Corps:机电一体化背撑商业开发
- 批准号:
1242797 - 财政年份:2012
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Multidisciplinary Engineering Capstone Design on Geriatric Assistive Devices and Systems (GADS)
老年辅助设备和系统 (GADS) 的多学科工程顶点设计
- 批准号:
0853936 - 财政年份:2009
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Collaborative Research: Design and Fundamental Understanding of Advanced Minimum Quantity Lubrication (MQL) Machining using Nanolubricants
合作研究:使用纳米润滑剂进行先进微量润滑 (MQL) 加工的设计和基本理解
- 批准号:
0927511 - 财政年份:2009
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
相似国自然基金
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Smooth Particle Hydrodynamic (SPH) Modeling of Grinding the SiC-SiC Ceramic Matrix Composite
SiC-SiC 陶瓷基复合材料磨削的光滑颗粒流体动力学 (SPH) 建模
- 批准号:
426949379 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Research Grants
Numerical modeling of the thermo-mechanical contact in grinding
磨削中热机械接触的数值模拟
- 批准号:
394846749 - 财政年份:2017
- 资助金额:
$ 45.82万 - 项目类别:
Research Grants
An evaluation of polishing of ancient bronze Buddha statues and examination of sculptural expression
古代青铜佛像打磨评价及雕塑表现力检验
- 批准号:
15K12837 - 财政年份:2015
- 资助金额:
$ 45.82万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Kinematic modeling and calibration of multi-axis saw grinding machine
多轴锯片磨床运动学建模与标定
- 批准号:
469782-2014 - 财政年份:2014
- 资助金额:
$ 45.82万 - 项目类别:
Engage Grants Program
Modeling and optimization of profile creep-feed grinding with cubic boron nitride
立方氮化硼仿形缓进给磨削的建模和优化
- 批准号:
217203-2008 - 财政年份:2012
- 资助金额:
$ 45.82万 - 项目类别:
Discovery Grants Program - Individual