XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
基本信息
- 批准号:1533881
- 负责人:
- 金额:$ 14.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of SPANDAN project is to create a novel architecture-independent framework for designing efficient, portable and scalable parallel algorithms for analyzing large-scale dynamic networks. SPANDAN will not only provide an intuitive methodology for efficiently translating sequential algorithms into scalable parallel algorithms for dynamic networks, but also provide mechanisms for their analytical evaluation and serve as a mediatory layer between applications and system level tuning. To evaluate the effectiveness of SPANDAN framework in real-world applications, the PIs will collaborate with social scientists and biologists. They will also integrate research findings into various courses such as network analysis, parallel algorithms, and bioinformatics. They will further collaborate with high schools to develop summer courses with the goal of encouraging women and minority students to pursue IT-related careers. As the underlying methodology, the SPANDAN framework will exploit graph sparsification techniques to divide the network into sparse subgraphs (certificates) that form the leaves of a sparsification tree. This innovative approach will lead to the design and analysis of efficient parallel algorithms for updating dynamic networks, and reduction of memory latency associated with parallelizing unstructured data. Specifically parallel algorithms will be designed for maintaining network topological characteristics, and updating influential vertices and communities. To demonstrate portability and performance, the developed algorithms will be implemented on the distributed memory clusters, shared memory multicores, and massively multithreaded CRAY-XMT.For further information see the project web site at: http://cs.mst.edu/labs/crewman/projects/SPANDAN/
SPANDAN 项目的目标是创建一个新颖的独立于架构的框架,用于设计高效、可移植和可扩展的并行算法来分析大规模动态网络。 SPANDAN 不仅提供了一种直观的方法,可以有效地将顺序算法转换为动态网络的可扩展并行算法,而且还提供了分析评估的机制,并充当应用程序和系统级调整之间的中介层。为了评估 SPANDAN 框架在实际应用中的有效性,PI 将与社会科学家和生物学家合作。他们还将研究成果整合到网络分析、并行算法和生物信息学等各种课程中。他们将进一步与高中合作开发暑期课程,旨在鼓励女性和少数族裔学生从事与信息技术相关的职业。作为底层方法,SPANDAN 框架将利用图稀疏化技术将网络划分为稀疏子图(证书),形成稀疏树的叶子。这种创新方法将导致设计和分析用于更新动态网络的高效并行算法,并减少与并行化非结构化数据相关的内存延迟。具体来说,将设计并行算法来维护网络拓扑特征,并更新有影响力的顶点和社区。为了演示可移植性和性能,所开发的算法将在分布式内存集群、共享内存多核和大规模多线程 CRAY-XMT 上实现。有关更多信息,请参阅项目网站:http://cs.mst.edu/labs /船员/项目/SPANDAN/
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity and Reliability in Incomplete Networks: Centrality Metrics to Community Scoring Functions
- DOI:10.1109/asonam.2016.7752215
- 发表时间:2016-01-01
- 期刊:
- 影响因子:0
- 作者:Sarkar, Soumya;Kumar, Suhansanu;Mukherjee, Animesh
- 通讯作者:Mukherjee, Animesh
Application of Graph Sparsification in Developing Parallel Algorithms for Updating Dynamic Networks
图稀疏化在开发更新动态网络的并行算法中的应用
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Srinivasan, S;Das, S;Bhowmick, S
- 通讯作者:Bhowmick, S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjukta Bhowmick其他文献
Sanjukta Bhowmick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjukta Bhowmick', 18)}}的其他基金
Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data,Interaction,Visualization, and softwarE(MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
- 批准号:
2120414 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
Collaborative Research: Framework Implementations: CSSI: CANDY: Cyberinfrastructure for Accelerating Innovation in Network Dynamics
合作研究:框架实施:CSSI:CANDY:加速网络动态创新的网络基础设施
- 批准号:
2104076 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: NetSplicer: Scalable Decoupling-based Algorithms for Multilayer Network Analysis
合作研究:SHF:中:NetSplicer:用于多层网络分析的可扩展的基于解耦的算法
- 批准号:
1956373 - 财政年份:2020
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
- 批准号:
1900765 - 财政年份:2019
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
- 批准号:
1924486 - 财政年份:2018
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
SPX: Collaborative Research: SANDY: Sparsification-Based Approach for Analyzing Network Dynamics
SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法
- 批准号:
1916084 - 财政年份:2018
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
SPX: Collaborative Research: SANDY: Sparsification-Based Approach for Analyzing Network Dynamics
SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法
- 批准号:
1725566 - 财政年份:2017
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
相似海外基金
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
- 批准号:
1924486 - 财政年份:2018
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
XPS: EXPL: FP: Symmetric Queries as a Building Block for Efficient Parallel Query Evaluation
XPS:EXPL:FP:对称查询作为高效并行查询评估的构建块
- 批准号:
1606557 - 财政年份:2015
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
- 批准号:
1533918 - 财政年份:2015
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
XPS: EXPL: FP: Architecture and Software for Scalable Persistent Memory
XPS:EXPL:FP:可扩展持久内存的架构和软件
- 批准号:
1439075 - 财政年份:2014
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
XPS: EXPL: FP: Collaborative Research: Formal methods based algorithmic synthesis of more-than-Moore nano-crossbars for extreme-scale computing
XPS:EXPL:FP:协作研究:基于形式方法的超摩尔纳米交叉开关的算法合成,用于超大规模计算
- 批准号:
1438987 - 财政年份:2014
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant