XPS: EXPL: FP: Collaborative Research: Formal methods based algorithmic synthesis of more-than-Moore nano-crossbars for extreme-scale computing

XPS:EXPL:FP:协作研究:基于形式方法的超摩尔纳米交叉开关的算法合成,用于超大规模计算

基本信息

  • 批准号:
    1438987
  • 负责人:
  • 金额:
    $ 8.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The transistor density of integrated circuits has been doubling approximately every two years for about four decades. This exponential rise in the computational power of the integrated circuit has driven the information technology revolution that has transformed every aspect of our society - from personal entertainment devices to high-assurance intelligent cyber-physical systems. However, the growth in transistor density is now slowing down, and new technological breakthroughs are urgently needed to sustain the ongoing information technology revolution. This project creates a new memristor-based nano-computing architecture that circumvents the fabrication density problems associated with traditional transistor-based integrated circuits. The project investigates the fundamental principles of memristor-based nano-computing and designs efficient memristor-based nano-crossbar circuits that can execute elementary bit-vector mathematical and logical computations. The project pursues a transformative agenda for next-generation extreme-scale computing involving two design principles: (1) the use of memristors as distributed asynchronous digital switches and continuous-valued non-volatile nano-stores of input data and intermediate results, and (2) the use of sneak-paths in nano-crossbars as fundamental computational primitives that pool together results of intermediate computations from distributed memristor nano-stores.The memristor-based nano-computing architecture developed in the project will enable the execution of legacy programs on low-energy ultra-dense memristive nano-crossbar circuits and will facilitate the design of domain-specific parallel execution engines that combine storage and computation on the same chip - thereby nullifying the traditional barrier between the memory and the microprocessor.
大约四十年来,集成电路的晶体管密度大约每两年翻一番。集成电路计算能力的指数级增长推动了信息技术革命,这场革命改变了我们社会的各个方面——从个人娱乐设备到高保证的智能网络物理系统。然而,晶体管密度的增长现在正在放缓,迫切需要新的技术突破来维持正在进行的信息技术革命。该项目创建了一种新的基于忆阻器的纳米计算架构,避免了与传统基于晶体管的集成电路相关的制造密度问题。该项目研究基于忆阻器的纳米计算的基本原理,并设计高效的基于忆阻器的纳米交叉开关电路,该电路可以执行基本的位向量数学和逻辑计算。该项目追求下一代超大规模计算的变革议程,涉及两个设计原则:(1)使用忆阻器作为分布式异步数字开关和输入数据和中间结果的连续值非易失性纳米存储,以及( 2)使用纳米交叉开关中的潜行路径作为基本计算原语,将分布式忆阻器纳米存储的中间计算结果汇集在一起​​。该项目中开发的基于忆阻器的纳米计算架构将使在低能耗超密集忆阻纳米交叉开关电路上执行遗留程序,并将促进特定领域并行执行引擎的设计,将存储和计算结合在同一芯片上,从而消除存储器和微处理器之间的传统障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Cady其他文献

Deep Mapper: A Multi-Channel Single-Cycle Near-Sensor DNN Accelerator
Deep Mapper:多通道单周期近传感器 DNN 加速器
Interfacing neural cells with typical microelectronics materials for future manufacturing.
将神经细胞与典型的微电子材料连接起来,用于未来的制造。
  • DOI:
    10.1016/j.bios.2023.115749
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Fernando Pesantez Torres;Natalya Tokranova;Eleanor Amodeo;Taylor Bertucci;Thomas R. Kiehl;Yubing Xie;Nathaniel Cady;S. Sharfstein
  • 通讯作者:
    S. Sharfstein

Nathaniel Cady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Cady', 18)}}的其他基金

Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319400
  • 财政年份:
    2023
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2409796
  • 财政年份:
    2023
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    1823015
  • 财政年份:
    2018
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant

相似海外基金

XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
  • 批准号:
    1924486
  • 财政年份:
    2018
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
XPS: EXPL: FP: Symmetric Queries as a Building Block for Efficient Parallel Query Evaluation
XPS:EXPL:FP:对称查询作为高效并行查询评估的构建块
  • 批准号:
    1606557
  • 财政年份:
    2015
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
  • 批准号:
    1533881
  • 财政年份:
    2015
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
  • 批准号:
    1533918
  • 财政年份:
    2015
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
XPS: EXPL: FP: Architecture and Software for Scalable Persistent Memory
XPS:EXPL:FP:可扩展持久内存的架构和软件
  • 批准号:
    1439075
  • 财政年份:
    2014
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了