SPX: Collaborative Research: SANDY: Sparsification-Based Approach for Analyzing Network Dynamics

SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法

基本信息

  • 批准号:
    1916084
  • 负责人:
  • 金额:
    $ 17.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this three-year project, Sparsification-based Approach for Analyzing Network Dynamics (SANDY), is to develop a suite of scalable parallel algorithms for updating dynamic networks for different problems that can be executed on a wide range of HPC platforms. Dynamic network analysis will enable researchers to study the evolution of complex systems in diverse disciplines, such as bioinformatics, social sciences, and epidemiology. The SANDY project is expected to initiate a new direction of research in developing parallel dynamic network algorithms that will benefit multiple analysis objectives (e.g., motif finding and network alignment) and application domains (e.g., epidemiology, health care). Research findings will be integrated into courses on network analysis, parallel algorithms, and bioinformatics offered at the three collaborating institutions. The PIs will collaborate with high schools to deliver talks on network theory, and encourage women and minority students to pursue IT-related careers. To develop efficient and scalable parallel algorithms, the PIs propose to use an elegant technique, called graph sparsification, that expresses graph algorithms in a reduction-like fashion. The formal steps to parallelization, as guided by the graph sparsification framework, provide a template for creating provably correct parallel algorithms for dynamic networks. The proposed algorithms will address the dual needs of portability and performance optimization. The framework will further provide a mechanism for combining high level (e.g., static and dynamic graph partitioning) and low level (e.g., dataflow algorithms) tuning strategies to ensure high performance and scalability for various parallel architectures by considering such factors as scalability, time, memory, and energy efficiency.
这个为期三年的项目“基于稀疏化的网络动态分析方法”(SANDY) 的目标是开发一套可扩展的并行算法,用于针对不同问题更新动态网络,这些算法可以在各种 HPC 平台上执行。动态网络分析将使研究人员能够研究生物信息学、社会科学和流行病学等不同学科的复杂系统的演化。 SANDY 项目预计将在开发并行动态网络算法方面开创一个新的研究方向,这将有利于多种分析目标(例如,基序查找和网络对齐)和应用领域(例如,流行病学、医疗保健)。研究成果将被纳入三个合作机构提供的网络分析、并行算法和生物信息学课程中。 PI 将与高中合作举办网络理论讲座,并鼓励女性和少数族裔学生从事 IT 相关职业。 为了开发高效且可扩展的并行算法,PI 建议使用一种称为图稀疏化的优雅技术,该技术以类似简化的方式表达图算法。在图稀疏框架的指导下,并行化的正式步骤提供了一个模板,用于为动态网络创建可证明正确的并行算法。所提出的算法将满足可移植性和性能优化的双重需求。该框架将进一步提供一种结合高层(例如静态和动态图分区)和低层(例如数据流算法)调整策略的机制,通过考虑可扩展性、时间、内存和能源效率。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Source Shortest Path Tree for Big Dynamic Graphs
大动态图的单源最短路径树
  • DOI:
    10.1109/bigdata.2018.8622042
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riazi, Sara;Srinivasan, Sriram;Das, Sajal K.;Bhowmick, Sanjukta;Norris, Boyana
  • 通讯作者:
    Norris, Boyana
Applying a Probabilistic Infection Model for studying contagion processes in contact networks
  • DOI:
    10.1016/j.jocs.2021.101419
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Qian, William;Bhowmick, Sanjukta;Mikler, Armin R.
  • 通讯作者:
    Mikler, Armin R.
Partitioning Communication Streams Into Graph Snapshots
将通信流划分为图形快照
  • DOI:
    10.1109/tnse.2022.3223614
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Wendt, Jeremy D.;Field, Richard V.;Phillips, Cynthia A.;Prasadan, Arvind;Wilson, Tegan;Soundarajan, Sucheta;Bhowmick, Sanjukta
  • 通讯作者:
    Bhowmick, Sanjukta
A Shared-Memory Algorithm for Updating Tree-Based Properties of Large Dynamic Networks
一种用于更新大型动态网络的基于树的属性的共享内存算法
  • DOI:
    10.1109/tbdata.2018.2870136
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Srinivasan, Sriram;Pollard, Samuel;Das, Sajal K.;Norris, Boyana;Bhowmick, Sanjukta
  • 通讯作者:
    Bhowmick, Sanjukta
A Shared-Memory Parallel Algorithm for Updating Single-Source Shortest Paths in Large Dynamic Networks
大型动态网络中单源最短路径更新的共享内存并行算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjukta Bhowmick其他文献

Sanjukta Bhowmick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjukta Bhowmick', 18)}}的其他基金

Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data,Interaction,Visualization, and softwarE(MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
  • 批准号:
    2120414
  • 财政年份:
    2021
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework Implementations: CSSI: CANDY: Cyberinfrastructure for Accelerating Innovation in Network Dynamics
合作研究:框架实施:CSSI:CANDY:加速网络动态创新的网络基础设施
  • 批准号:
    2104076
  • 财政年份:
    2021
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: NetSplicer: Scalable Decoupling-based Algorithms for Multilayer Network Analysis
合作研究:SHF:中:NetSplicer:用于多层网络分析的可扩展的基于解耦的算法
  • 批准号:
    1956373
  • 财政年份:
    2020
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
  • 批准号:
    1900765
  • 财政年份:
    2019
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Continuing Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
  • 批准号:
    1924486
  • 财政年份:
    2018
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: SANDY: Sparsification-Based Approach for Analyzing Network Dynamics
SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法
  • 批准号:
    1725566
  • 财政年份:
    2017
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Continuing Grant
XPS: EXPL: FP: Collaborative Research: SPANDAN: Scalable Parallel Algorithms for Network Dynamics Analysis
XPS:EXPL:FP:协作研究:SPANDAN:用于网络动态分析的可扩展并行算法
  • 批准号:
    1533881
  • 财政年份:
    2015
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 17.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了