CAREER: Electrokinetic Transport of Fluid, Particles and Macromolecules through Nanochannels and Nanopores

职业:流体、颗粒和大分子通过纳米通道和纳米孔的动电传输

基本信息

  • 批准号:
    1532652
  • 负责人:
  • 金额:
    $ 20.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-16 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

1150590 PI: SaintillanRecent advances in microfabrication techniques have enabled the development of the field of microfluidics. As these techniques become more sophisticated, devices are now being scaled down to the nanoscale, bringing about a new wealth of physical phenomena to be exploited in lab-on-chip devices for instance. The use of electrokinetics in these devices has proven particularly useful in a wide range of applications, and specifically to manipulate fluid, particles and macromolecules. Yet, the modeling of these flows at the nanoscale still suffers from limitations, owing to the inability of classical models to capture certain non-continuum effects, and to the high-cost of direct molecular simulations, which are only able to resolve very short time scales. These observations emphasize the need for renewed modeling efforts in the field of electrokinetics in highly confined environments. In this project, we propose to study electrochemical and macromolecular transport in confined devices using a new simulation approach for diffuse charge dynamics based on a Langevin model and Brownian dynamics for the electrolyte species. This new method will incorporate features from classical continuum models, but will also allow one to capture non-continuum effects without the high cost of atomistic methods. It can be applied to study both electroosmosis and electrophoresis with electrical double layers of arbitrary sizes, and can easily account for complex geometries. A new polymer model based on slender-body theory for a fluctuating elastic filament will also be developed to study the dynamics of polyelectrolytes with arbitrary Debye lengths. These new models and tools will be applied to study a number of technological applications, including: (i) the electrophoretic separation of oligonucleotides in nanochannels, (ii) electrochemical transport through nanocapillary array membranes, and (iii) the electrically driven translocation of biological polymers through nanopores.The proposed research activities will serve to enhance the fundamental understanding and modeling of electrokinetic flows and macromolecular transport in highly confined geometries, where non-continuum effects may become important. The new models and simulation tools implemented as part of the research will be applicable to a wide range of problems in the fields of physics, engineering, and medicine, among which: biochemical assays on lab-on-chip devices, electrohydrodynamic stretching of DNA for genomic analysis, electrochemical transport through polymer electrolyte membranes in PEM fuel cells, and many others. Educational and outreach activities will also be integrated in this program. A new graduate-level course on fundamentals and applications of micro- and nanofluidics, including electrokinetic flows, will be introduced at the University of Illinois. A tutorial website on electrokinetics and its applications will be designed for use by students and non-specialists, and a visualization software for diffuse charge dynamics and electrochemical transport will be developed and made available online to students and researchers in the field under a public license.
1150590 PI:微加工技术的SaintillanRecencent进展已使微流体学领域的发展。随着这些技术变得越来越复杂,现在将设备扩展到纳米级,例如在实验室芯片设备中利用新的物理现象。事实证明,在这些设备中使用电动物质在广泛的应用中特别有用,特别是对流体,颗粒和大分子的操纵。然而,由于经典模型无法捕获某些非义大利效应,以及直接分子模拟的高成本,这些流动在纳米级处的建模仍然存在局限性,这些效果只能解决很短的时间尺度。这些观察结果强调了在高度密闭环境中电动物质领域重新建模工作的必要性。在这个项目中,我们建议使用基于langevin模型的扩散电荷动力学和电解质物种的布朗动力学来研究封闭设备中的电化学和大分子传输。这种新方法将结合经典连续模型的功能,但也将允许人们在没有原子方法成本的高成本的情况下捕获非智能效应。它可以应用于使用任意尺寸的电气双层研究电流和电泳,并且可以轻松考虑复杂的几何形状。还将开发一种基于细长体体理论的新聚合物模型,以研究弹性细丝的波动弹性丝,以研究任意debye长度的聚电解质的动力学。这些新模型和工具将应用于研究许多技术应用,包括:(i)纳米通道中寡核苷酸的电泳分离,(ii)通过纳米毛细血管阵列的电化学传输,以及(iii)(iii)通过纳米的电源构造的型号,以促进纳米的电源。在高度狭窄的几何形状中,非分子效应可能变得重要。作为研究的一部分实施的新模型和仿真工具将适用于物理,工程和医学领域的各种问题,其中:其中:对实验室芯片设备实验室的生化测定,DNA的DNA的生化测定,用于基因组分析的电氢动力扩展,用于基因组分析,通过聚合物电子电池燃料细胞的电化学运输,以及许多其他燃料燃料和许多其他。教育和外展活动也将集成到该计划中。伊利诺伊大学将引入一项新的研究生级课程,包括微流体和纳米流体的基础和应用课程,包括电动流动。有关电动器及其应用的教程网站将设计供学生和非专家使用,并且将开发用于弥漫性电荷动力学和电化学运输的可视化软件,并在公共许可证中向现场的学生和研究人员提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Saintillan其他文献

Modeling the interplay of mechanosensitive adhesion and membrane tension for polarization and shape determination in crawling cells
  • DOI:
    10.1016/j.bpj.2022.11.2839
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Yuzhu Chen;Padmini Rangamani;David Saintillan
  • 通讯作者:
    David Saintillan
Active Hydrodynamics of Interphase Chromatin: Coarse-Grained Modeling and Simulations
  • DOI:
    10.1016/j.bpj.2017.11.2458
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    David Saintillan;Alexandra Zidovska;Michael J. Shelley
  • 通讯作者:
    Michael J. Shelley
Les suspensions actives et leurs modèles non linéaires
活性悬浮液和非线性模型
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Saintillan;Michael J. Shelley
  • 通讯作者:
    Michael J. Shelley
Active nematic fluids on Riemannian 2-manifolds
黎曼 2 流形上的活性向列液
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cuncheng Zhu;David Saintillan;Albert Chern
  • 通讯作者:
    Albert Chern

David Saintillan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Saintillan', 18)}}的其他基金

Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153520
  • 财政年份:
    2022
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
NSF-BSF: From microscopic propulsion to macroscale dynamics: Active particle transport in complex environments
NSF-BSF:从微观推进到宏观动力学:复杂环境中的活性粒子传输
  • 批准号:
    1934199
  • 财政年份:
    2019
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Interphase Chromatin as a Complex Active Fluid: Experiments and Microscopic to Mesoscopic Modeling
合作研究:间期染色质作为复杂的活性流体:实验和微观到介观建模
  • 批准号:
    1762566
  • 财政年份:
    2018
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrorotational fluid instabilities
合作研究:电旋转流体不稳定性
  • 批准号:
    1705377
  • 财政年份:
    2017
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Understanding and Controlling Active Fluids through Modeling, Simulation, and Experiment
合作研究:FRG:通过建模、模拟和实验理解和控制活性流体
  • 批准号:
    1463965
  • 财政年份:
    2015
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Continuing Grant
Travel support for students and young researchers to attend "Flowing Soft Matter: Bridging the Gap Between Statistical Physics and Fluid Mechanics," Udine, Italy, 6/30/14 - 7/4/14
为学生和年轻研究人员提供旅行支持,参加“流动软物质:弥合统计物理与流体力学之间的差距”,意大利乌迪内,2014 年 6 月 30 日 - 2014 年 7 月 4 日
  • 批准号:
    1440106
  • 财政年份:
    2014
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
CAREER: Electrokinetic Transport of Fluid, Particles and Macromolecules through Nanochannels and Nanopores
职业:流体、颗粒和大分子通过纳米通道和纳米孔的动电传输
  • 批准号:
    1150590
  • 财政年份:
    2012
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Collaborative Research: The Analysis and Simulation of Biologically Active Suspensions
合作研究:生物活性悬浮液的分析与模拟
  • 批准号:
    0920931
  • 财政年份:
    2009
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant

相似国自然基金

考虑共乘服务模式的共享电动汽车运营决策建模与优化
  • 批准号:
    72301005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于疏水性低共熔溶剂的毛细管电动色谱手性药物分离体系研究
  • 批准号:
    22374060
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
异构高复合链路通信异常下的网联电动汽车系统动力学与鲁棒调控研究
  • 批准号:
    52372374
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于储热调节的纯电动汽车热管理系统能流耦合机理及电热协同控制
  • 批准号:
    52302450
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling
草甘膦的电动生物降解:可行性、机制和传输模型
  • 批准号:
    2305141
  • 财政年份:
    2023
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Development of Alternating Current Resistive Pulse Sensing Using Transport-Induced-Charge Theory
使用传输感应电荷理论开发交流电阻脉冲传感
  • 批准号:
    19K15600
  • 财政年份:
    2019
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904453
  • 财政年份:
    2019
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904545
  • 财政年份:
    2019
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrokinetic Transport and Separation in MEMS-fabricated Nanofluidic Channels
合作研究:MEMS 制造的纳流体通道中的动电传输和分离
  • 批准号:
    1402736
  • 财政年份:
    2014
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了