Distributed Recursive Robust Estimation: Theory, Algorithms and Applications in Single and Multi-Camera Computer Vision
分布式递归鲁棒估计:单相机和多相机计算机视觉中的理论、算法和应用
基本信息
- 批准号:1509372
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many computer vision problems require recursive robust estimation. Some examples include surveillance applications involving a large indoor or outdoor area monitored by a network of static cameras; natural background scenes' recovery, e.g. forest scenes with moving leaves and branches, and their subspace estimation for texture synthesis applications in animated movies; and multi-site video conferencing. The surveillance problem requires tracking moving objects; this can be an easy problem if the background is static. However consider outdoor scene monitoring on a rainy or very foggy day. As the fog moves and its density changes, it results in complex and changing backgrounds and the tracking algorithms need to be robust to this type of 'large' background noise. The texture synthesis for animation is a well-studied problem if there are no occlusions (in this case the background sequence is directly available) but becomes difficult in the presence of severe (large-sized and persistent) occlusions, e.g. moving and occasionally static animals occluding the background scenes. We show in this project that the most challenging step in all the above problems can either be posed as a distributed recursive robust principal components' analysis (PCA) problem, that is robust to outliers, or as a distributed recursive robust sparse recovery problem, that is robust to large but structured noise (noise that is non-sparse and lies in a low-dimensional subspace). The main goal of this project is to develop distributed algorithms to solve these problems for the multi-camera setting. The algorithms will be developed in the context of a multi-site video combining application (needed for multi-site video conferencing). This project is developing the first set of online distributed solutions for the decomposition of a matrix into a sum of a sparse and a low-rank matrix. Robust PCA and robust sparse recovery are special cases of this more general problem. Our online solutions will be significantly faster and memory-efficient compared to existing batch methods. Moreover, unlike most batch methods, these will provably work even when for slow moving or occasionally static foreground objects (these result in the sparse matrix also becoming rank deficient and hence batch methods do not work in this case). This advantage comes because our methods exploit accurate initial subspace knowledge and slow subspace change (both are usually practically valid assumptions in real videos). The key novelty of our work within the computer vision literature is that it is robust to slow changing backgrounds or to frequent and persistent occlusions (depending whether the foreground or the background is the layer of interest).
许多计算机视觉问题需要递归稳健估计。一些例子包括涉及由静态摄像机网络监控的大型室内或室外区域的监控应用;自然背景场景的恢复,例如具有移动树叶和树枝的森林场景,及其用于动画电影中纹理合成应用的子空间估计;和多站点视频会议。监控问题需要跟踪移动物体;如果背景是静态的,这可能是一个简单的问题。然而,请考虑在雨天或大雾天进行室外场景监控。随着雾的移动及其密度的变化,它会导致复杂且不断变化的背景,并且跟踪算法需要对这种类型的“大”背景噪声具有鲁棒性。如果没有遮挡(在这种情况下背景序列直接可用),动画的纹理合成是一个经过充分研究的问题,但在存在严重(大尺寸和持久)遮挡的情况下变得困难,例如移动的和偶尔静态的动物遮挡了背景场景。我们在这个项目中表明,所有上述问题中最具挑战性的步骤可以被提出为分布式递归鲁棒主成分分析(PCA)问题,即对异常值具有鲁棒性,或者作为分布式递归鲁棒稀疏恢复问题,即对于较大但结构化的噪声(非稀疏且位于低维子空间中的噪声)具有鲁棒性。该项目的主要目标是开发分布式算法来解决多摄像头设置的这些问题。这些算法将在多站点视频组合应用程序的背景下开发(多站点视频会议所需)。 该项目正在开发第一组在线分布式解决方案,用于将矩阵分解为稀疏矩阵和低秩矩阵的总和。鲁棒 PCA 和鲁棒稀疏恢复是这个更普遍问题的特例。与现有的批处理方法相比,我们的在线解决方案将显着加快速度并节省内存。此外,与大多数批处理方法不同,即使对于缓慢移动或偶尔静态的前景对象,这些方法也可以证明有效(这会导致稀疏矩阵也变得秩不足,因此批处理方法在这种情况下不起作用)。这种优势的出现是因为我们的方法利用了准确的初始子空间知识和缓慢的子空间变化(两者通常都是真实视频中实际上有效的假设)。我们在计算机视觉文献中工作的关键新颖之处在于,它对于缓慢变化的背景或频繁且持续的遮挡(取决于前景还是背景是感兴趣的层)具有鲁棒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namrata Vaswani其他文献
Support-Predicted Modified-CS for recursive robust principal components' Pursuit
用于递归稳健主成分追踪的支持预测修正CS
- DOI:
10.1109/isit.2011.6034215 - 发表时间:
2011-02-27 - 期刊:
- 影响因子:0
- 作者:
Chenlu Qiu;Namrata Vaswani - 通讯作者:
Namrata Vaswani
Efficient Federated Low Rank Matrix Recovery via Alternating GD and Minimization: A Simple Proof
通过交替 GD 和最小化的高效联合低秩矩阵恢复:一个简单的证明
- DOI:
10.1109/tit.2024.3365795 - 发表时间:
2023-06-30 - 期刊:
- 影响因子:2.5
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
Slow and Drastic Change Detection in General HMMs Using Particle Filters with Unknown Change Parameters
使用具有未知变化参数的粒子滤波器检测一般 HMM 中的缓慢和剧烈变化
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
Provable Low Rank Phase Retrieval and Compressive PCA
可证明的低秩相位检索和压缩 PCA
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Seyedehsara Nayer;Praneeth Narayanamurthy;Namrata Vaswani - 通讯作者:
Namrata Vaswani
A PARTICLE FILTER FOR TRACKING ADAPTIVE NEURAL RESPONSES IN AUDITORY CORTEX
用于跟踪听觉皮层自适应神经反应的粒子滤波器
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Jain;Mounya Elhilali;Namrata Vaswani;J. Fritz;S. Shamma - 通讯作者:
S. Shamma
Namrata Vaswani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namrata Vaswani', 18)}}的其他基金
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
- 批准号:
2115200 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
- 批准号:
1815101 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Online Algorithms for Streaming Structured Big-Data Mining
CIF:小型:流式结构化大数据挖掘在线算法
- 批准号:
1526870 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RI: Small: Exploiting Correlated Sparsity Pattern Change in Dynamic Vision Problems
RI:小:利用动态视觉问题中的相关稀疏模式变化
- 批准号:
1117509 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Recursive Robust Principal Components' Analyis (PCA)
CIF:小型:递归稳健主成分分析 (PCA)
- 批准号:
1117125 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCF (CIF): Small: Recursive Reconstruction of Sparse Signal Sequences
CCF (CIF):小:稀疏信号序列的递归重建
- 批准号:
0917015 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Change Detection in Nonlinear Systems and Applications in Shape Analysis
非线性系统中的变化检测及其在形状分析中的应用
- 批准号:
0725849 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
磨损状态信息递归特性驱动的磨合状态辨识与性能量化评价
- 批准号:52305221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
递归神经网络与模糊控制联合驱动的时变问题自适应求解及应用
- 批准号:62303174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
递归神经网络在FPGA上低功耗、可扩展、分布式的实现
- 批准号:62311530099
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于递归MT-InSAR的异常形变探测方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
P-递归多项式序列的算术理论、符号算法及其在组合分析中的应用
- 批准号:12271511
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
CAREER: Statistical Learning with Recursive Partitioning: Algorithms, Accuracy, and Applications
职业:递归分区的统计学习:算法、准确性和应用
- 批准号:
2239448 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Portfolio of compositions: Creating electroacoustic works through the sonification of recursive neural networks, and exploring the creative use of in
作品组合:通过递归神经网络的发声创作电声作品,并探索in的创造性运用
- 批准号:
2886370 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Studentship
Recursive Inequalities in Applied Proof Theory
应用证明理论中的递归不等式
- 批准号:
2889781 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Studentship
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Progress of Recursive Utility Maximization Theory and Its Applications
递归效用最大化理论及其应用进展
- 批准号:
23K01450 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)