Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling

合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法

基本信息

  • 批准号:
    2348163
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Rare natural hazards (for example, storm surge and hurricanes) can cause loss of lives and devastating damage to society and the environment. For instance, Hurricane Katrina (2005) caused over 1,500 deaths and total estimated damages of $75 billion in the New Orleans area and along the Mississippi coast as a result of storm surge. Uncertainty quantification (UQ) has been used widely to understand, monitor, and predict these rare natural hazards. The Gaussian process (GP) modeling framework is one of the most widely used tools to address such UQ applications and has been studied across several areas, including spatial statistics, design and analysis of computer experiments, and machine learning. With the advance of measurement technology and increasing computing power, large numbers of measurements and large-scale numerical simulations at increasing resolutions are routinely collected in modern applications and have given rise to several critical challenges in predicting real-world processes with associated uncertainty. While GP presents a promising route to carrying out UQ tasks for modern emerging applications such as coastal flood hazard studies, existing GP methods are inadequate in addressing several notable issues such as computational bottleneck due to big datasets and spatial heterogeneity due to complex structures in multi-dimensional domains. This project will develop new Bayesian GP methods to allow scalable computation and to capture spatial heterogeneity. The new methods, algorithms, theory, and software are expected to improve GP modeling for addressing data analytical issues across a wide range of fields, including physical science, engineering, medical science, public health, and business science. The project will develop and distribute user-friendly open-source software and provide interdisciplinary research training opportunities for undergraduate and graduate students.This project aims to develop a new Bayesian multi-scale residual learning framework with strong theoretical support that allows scalable computation and spatial nonstationarity for GP modeling. This framework integrates and extends several powerful techniques respectively arising in the literature on GP and that on multi-scale modeling, including predictive process approximation, blockwise shrinkage, and random recursive partitioning on the domain. This framework decomposes the GP into a cascade of residual processes that characterize the underlying covariance structures at different resolutions and that can be spatially heterogeneous in a variety of ways. The new framework allows for adoption of blockwise shrinkage to infer the covariance of the residual processes and incorporates random partition priors to enable adaptivity to various spatial structures in multi-dimensional domains. New recursive algorithms inspired by wavelet shrinkage and state-space models will be developed to achieve linear computational complexity and linear storage complexity in terms of the number of observations. The resulting GP method will guarantee linear computational complexity in a serial computing environment and also be easily parallelizable. This Bayesian multi-scale residual learning method provides a new approach to addressing GP modeling issues among spatial statistics, design and analysis of computer experiments, machine learning, and nonparametric regression.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罕见的自然灾害(例如风暴潮和飓风)可能会造成人员伤亡并对社会和环境造成毁灭性破坏。例如,卡特里娜飓风(2005 年)造成新奥尔良地区和密西西比海岸风暴潮造成 1,500 多人死亡,估计损失总额达 750 亿美元。不确定性量化(UQ)已被广泛用于理解、监测和预测这些罕见的自然灾害。 高斯过程 (GP) 建模框架是解决昆士兰大学此类应用最广泛使用的工具之一,并且已在多个领域进行了研究,包括空间统计、计算机实验的设计和分析以及机器学习。随着测量技术的进步和计算能力的提高,现代应用中经常收集分辨率不断提高的大量测量结果和大规模数值模拟,这在预测具有相关不确定性的现实世界过程方面带来了一些关键挑战。虽然 GP 为现代新兴应用(例如沿海洪水灾害研究)执行 UQ 任务提供了一条有前途的途径,但现有的 GP 方法不足以解决几个值得注意的问题,例如大数据集导致的计算瓶颈和多学科复杂结构导致的空间异质性。维度域。该项目将开发新的贝叶斯 GP 方法,以允许可扩展计算并捕获空间异质性。新方法、算法、理论和软件预计将改进 GP 建模,以解决物理科学、工程、医学、公共卫生和商业科学等广泛领域的数据分析问题。该项目将开发和分发用户友好的开源软件,并为本科生和研究生提供跨学科研究培训机会。该项目旨在开发一种新的贝叶斯多尺度残差学习框架,具有强大的理论支持,允许可扩展的计算和空间非平稳性用于 GP 建模。该框架集成并扩展了分别在 GP 和多尺度建模文献中出现的几种强大技术,包括预测过程近似、分块收缩和域上的随机递归分区。该框架将 GP 分解为一系列残差过程,这些残差过程表征了不同分辨率下的底层协方差结构,并且可以以多种方式实现空间异构。新框架允许采用分块收缩来推断残差过程的协方差,并结合随机分区先验以适应多维域中的各种空间结构。将开发受小波收缩和状态空间模型启发的新递归算法,以在观测数量方面实现线性计算复杂性和线性存储复杂性。由此产生的 GP 方法将保证串行计算环境中的线性计算复杂性,并且也易于并行化。这种贝叶斯多尺度残差学习方法为解决空间统计、计算机实验设计与分析、机器学习和非参数回归之间的GP建模问题提供了一种新方法。该奖项反映了NSF的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pulong Ma其他文献

Pulong Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pulong Ma', 18)}}的其他基金

Modeling Multivariate and Space-Time Processes: Foundations and Innovations
多元和时空过程建模:基础和创新
  • 批准号:
    2310419
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Modeling Multivariate and Space-Time Processes: Foundations and Innovations
多元和时空过程建模:基础和创新
  • 批准号:
    2348154
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2152998
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多源数据和贝叶斯理论的桥梁智能系统识别及状态评估研究
  • 批准号:
    52378312
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于贝叶斯层次模型在纵向队列中研究流感病毒感染的血清流行病学特征及抗体动力学机制
  • 批准号:
    82373639
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
贝叶斯框架下的高层建筑风致振动动力特性研究
  • 批准号:
    52308485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高维多节点贝叶斯网络的银屑病罹患与五运六气关联性研究
  • 批准号:
    82374618
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于变分推断法的航空电磁数据三维贝叶斯反演研究
  • 批准号:
    42304149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了