CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
基本信息
- 批准号:2115200
- 负责人:
- 金额:$ 56.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale usage of Internet-of-Things (IoT) devices, smartphones and surveillance cameras has resulted in huge amounts of geographically distributed data in current times. This naturally leads to questions of algorithm design for efficient processing and inference on this data. There is a need to compress (sketch) this data before it can be stored, processed, or transmitted. At the other extreme, in projection-imaging settings, such as magnetic resonance imaging (MRI), computed tomography (CT), Fourier ptychography, or sub-diffraction imaging, data is acquired one sample at a time, making the process very slow. In this scenario as well, data may be distributed, e.g., for a jointly reconstructed functional MR images of different human subjects, with scans that may have been acquired at different hospitals around the country. In many of these settings, privacy concerns dictate that the acquired measurements need to be processed in a federated manner. Moreover, the distributed nature of the data necessitates the design of secure approaches that are robust to attacks by potentially malicious nodes. Both efficient sketching and fast dynamic projection imaging require the ability to recover the true signal or image sequence from highly undersampled measurements. Since the early work on compressed sensing (CS), sparsity and structured sparsity assumptions have been exploited very fruitfully for both type of problems. However, there is limited literature on the use of the low-rank (LR) assumption on signal sequences, and almost none that theoretically analyzes the resulting approaches. This project develops fast, sample-efficient, and federated (private and communication-efficient) algorithms for provably correct subspace learning and low-rank matrix recovery from few column-wise independent linear, or quadratic projections. Extensions to LR plus sparse (LR+S) recovery are also examined. It should be noted that this problem setting is very different from other well-investigated LR recovery problems such as multivariate regression (due to the use of different independent measurement matrices for each signal), LR matrix sensing, or LR matrix completion. The team is investigating the design of Gradient Descent (GD) based solutions that are guaranteed, with high probability, to recover an n x q rank-r matrix from m independent linear projections of each of its q columns with m just large enough to satisfy mq C (n+q) r^2 approximately, and that converge geometrically to the true matrix. Furthermore, this project designs novel secure algorithms that are robust to Byzantine nodes for the above classes of problems. This effort is expected to lead to newer solution approaches and analysis techniques, since commonly used assumptions such as strongly convex cost functions and i.i.d. measurements do not hold in this setting. Finally, this project partially supports the new CyMathKids initiative, whose goal is to provide sustained year-long support and extension in Mathematics to grade-school students from under-funded school districts in Des Moines, Iowa. It is intended to fill some of the academic achievement gaps between disadvantaged students and advantaged ones, and do so while the gaps are still small: the pilot phase focuses on elementary students with a plan to follow the same students through the school years.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前,物联网(IoT)设备、智能手机和监控摄像头的大规模使用产生了大量地理分布的数据。这自然会导致算法设计问题,以便有效处理和推断这些数据。在存储、处理或传输这些数据之前,需要对其进行压缩(草图)。 另一方面,在投影成像环境中,例如磁共振成像 (MRI)、计算机断层扫描 (CT)、傅里叶叠层成像或亚衍射成像,一次采集一个样本的数据,使得过程非常缓慢。同样在这种情况下,数据也可以被分发,例如,针对不同人类受试者的联合重建的功能MR图像,以及可能在全国各地的不同医院获取的扫描。在许多这样的设置中,隐私问题表明需要以联合方式处理所获取的测量结果。此外,数据的分布式特性需要设计能够抵御潜在恶意节点攻击的安全方法。高效的草图绘制和快速动态投影成像都需要能够从高度欠采样的测量中恢复真实信号或图像序列。 自从压缩感知(CS)的早期工作以来,稀疏性和结构化稀疏性假设已经在这两类问题上得到了非常有效的利用。然而,关于在信号序列上使用低秩(LR)假设的文献有限,并且几乎没有对所得方法进行理论上分析的文献。该项目开发快速、样本高效和联合(私有和通信高效)算法,用于可证明正确的子空间学习和从少数列独立线性或二次投影中恢复低秩矩阵。还研究了 LR 加稀疏 (LR+S) 恢复的扩展。应该注意的是,这个问题设置与其他经过深入研究的 LR 恢复问题有很大不同,例如多元回归(由于对每个信号使用不同的独立测量矩阵)、LR 矩阵传感或 LR 矩阵完成。该团队正在研究基于梯度下降 (GD) 的解决方案的设计,该解决方案保证以高概率从每个 q 列的 m 个独立线性投影中恢复 n x q 秩-r 矩阵,其中 m 刚好足够满足 mq C (n+q) r^2 近似,并且几何收敛于真实矩阵。此外,该项目设计了新颖的安全算法,对于上述类别的问题对拜占庭节点具有鲁棒性。这项工作预计将带来更新的解决方案和分析技术,因为常用的假设(例如强凸成本函数和 i.i.d.)测量值在此设置下不成立。最后,该项目部分支持新的 CyMathKids 计划,其目标是为爱荷华州得梅因市资金不足学区的小学生提供持续一年的数学支持和扩展。它的目的是填补弱势学生和优势学生之间的一些学业成绩差距,并在差距仍然很小的时候这样做:试点阶段的重点是小学生,计划在整个学年中跟踪相同的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Matrix Computations With Low-Weight Encodings
具有低权重编码的分布式矩阵计算
- DOI:10.1109/jsait.2023.3308768
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Das, Anindya Bijoy;Ramamoorthy, Aditya;Love, David J.;Brinton, Christopher G.
- 通讯作者:Brinton, Christopher G.
A Unified Treatment of Partial Stragglers and Sparse Matrices in Coded Matrix Computation
编码矩阵计算中部分散乱矩阵和稀疏矩阵的统一处理
- DOI:10.1109/jsait.2022.3186908
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Das, Anindya Bijoy;Ramamoorthy, Aditya
- 通讯作者:Ramamoorthy, Aditya
Distributed Matrix Computations with Low-weight Encodings
使用低权重编码的分布式矩阵计算
- DOI:10.1109/isit54713.2023.10206445
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Das, Anindya Bijoy;Ramamoorthy, Aditya;Love, David J.;Brinton, Christopher G.
- 通讯作者:Brinton, Christopher G.
Fully Decentralized and Federated Low Rank Compressive Sensing
完全分散和联合的低阶压缩感知
- DOI:10.23919/acc53348.2022.9867452
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Moothedath, Shana;Vaswani, Namrata
- 通讯作者:Vaswani, Namrata
Aspis: Robust Detection for Distributed Learning
Aspis:分布式学习的鲁棒检测
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Konstantinidis, K.;Ramamoorthy, A.
- 通讯作者:Ramamoorthy, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namrata Vaswani其他文献
Provable Low Rank Phase Retrieval and Compressive PCA
可证明的低秩相位检索和压缩 PCA
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Seyedehsara Nayer;Praneeth Narayanamurthy;Namrata Vaswani - 通讯作者:
Namrata Vaswani
Efficient Federated Low Rank Matrix Recovery via Alternating GD and Minimization: A Simple Proof
通过交替 GD 和最小化的高效联合低秩矩阵恢复:一个简单的证明
- DOI:
10.1109/tit.2024.3365795 - 发表时间:
2023-06-30 - 期刊:
- 影响因子:2.5
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
Support-Predicted Modified-CS for recursive robust principal components' Pursuit
用于递归稳健主成分追踪的支持预测修正CS
- DOI:
10.1109/isit.2011.6034215 - 发表时间:
2011-02-27 - 期刊:
- 影响因子:0
- 作者:
Chenlu Qiu;Namrata Vaswani - 通讯作者:
Namrata Vaswani
Slow and Drastic Change Detection in General HMMs Using Particle Filters with Unknown Change Parameters
使用具有未知变化参数的粒子滤波器检测一般 HMM 中的缓慢和剧烈变化
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
A linear classifier for Gaussian class conditional distributions with unequal covariance matrices
具有不等协方差矩阵的高斯类条件分布的线性分类器
- DOI:
10.1109/icpr.2002.1048236 - 发表时间:
2002-12-10 - 期刊:
- 影响因子:0
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
Namrata Vaswani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namrata Vaswani', 18)}}的其他基金
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
- 批准号:
1815101 - 财政年份:2018
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
Distributed Recursive Robust Estimation: Theory, Algorithms and Applications in Single and Multi-Camera Computer Vision
分布式递归鲁棒估计:单相机和多相机计算机视觉中的理论、算法和应用
- 批准号:
1509372 - 财政年份:2015
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Online Algorithms for Streaming Structured Big-Data Mining
CIF:小型:流式结构化大数据挖掘在线算法
- 批准号:
1526870 - 财政年份:2015
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
RI: Small: Exploiting Correlated Sparsity Pattern Change in Dynamic Vision Problems
RI:小:利用动态视觉问题中的相关稀疏模式变化
- 批准号:
1117509 - 财政年份:2011
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Recursive Robust Principal Components' Analyis (PCA)
CIF:小型:递归稳健主成分分析 (PCA)
- 批准号:
1117125 - 财政年份:2011
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CCF (CIF): Small: Recursive Reconstruction of Sparse Signal Sequences
CCF (CIF):小:稀疏信号序列的递归重建
- 批准号:
0917015 - 财政年份:2009
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
Change Detection in Nonlinear Systems and Applications in Shape Analysis
非线性系统中的变化检测及其在形状分析中的应用
- 批准号:
0725849 - 财政年份:2007
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
相似国自然基金
新型CAR-T小分子安全开关的设计、合成及其抗实体瘤肿瘤免疫机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
高寒高海拔深切峡谷桥址局地风场小尺度热力驱动机制及其对桥上行车安全的影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于定量分析的古村落建设安全智慧研究——以小江断裂带为例
- 批准号:41867069
- 批准年份:2018
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
基于并行计算的大规模电力系统小干扰稳定在线分析与安全预警研究
- 批准号:51677164
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
小干扰稳定安全控制的特征值优化机理研究
- 批准号:51407036
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Efficiency and Robustness of Secure Computation
CIF:小:安全计算的效率和稳健性
- 批准号:
2327981 - 财政年份:2023
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Efficiency and Robustness of Secure Computation
CIF:小:安全计算的效率和稳健性
- 批准号:
2327981 - 财政年份:2023
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Secure Quantum Communication with Limited Resources
CIF:小型:利用有限资源实现安全量子通信
- 批准号:
1812070 - 财政年份:2018
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant
CIF: Small: Designing Secure, Reliable, and Resilient Wireless Sensor Networks
CIF:小型:设计安全、可靠且有弹性的无线传感器网络
- 批准号:
1617934 - 财政年份:2016
- 资助金额:
$ 56.45万 - 项目类别:
Standard Grant