Carrier Dynamics in Quantum Dot Solar Cells and Infrared Detectors

量子点太阳能电池和红外探测器中的载流子动力学

基本信息

  • 批准号:
    1509712
  • 负责人:
  • 金额:
    $ 39.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Abstract:Abstract Title: "Understanding the enhancement mechanisms of optical energy conversion efficiency in solar cells based on confinement by quantum dots"Nontechnical:Photovoltaic is a technology that permits the conversion of abundant radiative energy from the sun to electrical energy which can ultimately be widely distributed using a smart electrical grid infrastructure. This can be done with a minimum negative impact on the environment. In spite of being a well-established clean source of energy, there is a need for improving the present conversion efficiency of Si solar cells. New materials and new approaches to achieve this goal have emerged. One appealing approach is based on using different materials with different bandgap to enhance the conversion efficiency of present solar cells. Another approach is based on using confined nanostructures, called quantum dots, to convert solar energy with high efficiency. This latter approach has the advantage of being simpler and does not require complex growth processes. This might be a very inexpensive approach to making solar cells. On the other hand, this approach has not yet demonstrated its potential. Different experimental studies are proposed with the goal of understanding the potential and limitations of this approach. The proposed approach involves an effort toward a better understanding of light absorption in these structures in order to design very efficient solar cells based on quantum dots. If successful, this project will have a major impact on clean and efficient energy conversion in this country.Technical:Photovoltaic devices based on p-n junction are the most mature technology for solar-energy harvesting. This proposal seeks to develop new highly efficient GaAs quantum dot solar cells based on the intermediate band concept. These cells have the potential of being as efficient as 3-junction solar cells but at a much lower level of complexity. The concept of intermediate band solar cells has been with us for more than 15 years. Unfortunately, these solar cells have so far demonstrated a limited conversion efficiency of 18 % or less. This is in large part related to the fact that researchers have not been able to demonstrate an intermediate band solar cell with a well-defined intermediate band Fermi energy, detached from the conduction band Fermi energy. Some key measurements on intermediate band solar cells that have not been attempted before are proposed in order to shed light on this topic. In particular, two-photon measurements using two optical sources of different wavelengths are proposed to understand if a 2-photon absorption can be measured and if the process is based on sequential photons absorption or due to simultaneous two-photon absorption. This will answer the question if intermediate band solar cells can be realized with well-defined intermediate band Fermi energy, detached from the conduction band Fermi energy. If substantially higher efficiencies cannot be reached using the concept of intermediate band solar cells, implying that the concept is basically flawed, this needs to be investigated and a final answer has to be provided with a clear explanation. Additionally, since the physics of these solar cells is similar to the physics describing photon absorption in IR-detectors, this new understanding will also lead to a better understanding of the operation of quantum dot infrared photodetectors (QDIPs). Two quantum dot solar cells will be studied with different bandgaps to optimize the predicted conversion efficiency of intermediate band solar cells.
摘要:摘要标题:“了解基于量子点约束的太阳能电池光能转换效率的增强机制”非技术:光伏是一种将太阳丰富的辐射能转换为电能的技术,最终可以得到广泛应用使用智能电网基础设施进行分布式。这样做可以将对环境的负面影响降到最低。尽管硅太阳能电池是一种成熟的清洁能源,但仍需要提高其现有的转换效率。实现这一目标的新材料和新方法已经出现。一种有吸引力的方法是基于使用具有不同带隙的不同材料来提高现有太阳能电池的转换效率。另一种方法是基于使用被称为量子点的受限纳米结构来高效转换太阳能。后一种方法的优点是更简单并且不需要复杂的生长过程。这可能是一种非常便宜的太阳能电池制造方法。另一方面,这种方法尚未展示其潜力。提出了不同的实验研究,目的是了解这种方法的潜力和局限性。所提出的方法涉及更好地理解这些结构中的光吸收,以便设计基于量子点的非常高效的太阳能电池。如果成功,该项目将对我国清洁高效的能源转换产生重大影响。 技术:基于p-n结的光伏器件是最成熟的太阳能收集技术。该提案旨在开发基于中能带概念的新型高效砷化镓量子点太阳能电池。这些电池具有与三结太阳能电池一样高效的潜力,但复杂性却低得多。中波段太阳能电池的概念已经存在超过 15 年了。不幸的是,迄今为止这些太阳能电池的转换效率有限,仅为 18% 或更低。这在很大程度上与以下事实有关:研究人员未能证明具有明确的中带费米能量(与导带费米能量分离)的中带太阳能电池。为了阐明这一主题,提出了一些以前从未尝试过的中波段太阳能电池的关键测量。特别是,建议使用两个不同波长的光源进行双光子测量,以了解是否可以测量 2 光子吸收,以及该过程是否基于顺序光子吸收或由于同时双光子吸收。这将回答是否可以利用与导带费米能量分离的明确的中带费米能量来实现中带太阳能电池的问题。如果使用中波段太阳能电池的概念无法达到显着更高的效率,则意味着该概念基本上是有缺陷的,需要对此进行调查,并且必须提供最终答案和明确的解释。此外,由于这些太阳能电池的物理原理与描述红外探测器中光子吸收的物理原理相似,这种新的理解也将有助于更好地理解量子点红外光电探测器 (QDIP) 的工作原理。将研究具有不同带隙的两种量子点太阳能电池,以优化中带太阳能电池的预测转换效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Dagenais其他文献

Optical pattern recognition by use of a segmented semiconductor optical amplifier.
使用分段半导体光放大器进行光学模式识别。
  • DOI:
    10.1364/ol.26.001248
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    P. Petruzzi;Christopher J. K. Richardson;M. Leeuwen;N. Moulton;Peter J. S. Heim;Mario Dagenais;Julius Goldhar
  • 通讯作者:
    Julius Goldhar
Lithography, Plasmonics and Sub-wavelength Aperture Exposure Technology
光刻、等离子体和亚波长孔径曝光技术

Mario Dagenais的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Dagenais', 18)}}的其他基金

Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
  • 批准号:
    2219760
  • 财政年份:
    2022
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Integrated scalable quantum receiver for energy efficient data exchange and telecommunication
用于节能数据交换和电信的集成可扩展量子接收器
  • 批准号:
    1927674
  • 财政年份:
    2019
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
EAGER: TDM solar cells: High Efficiency Perovskites and CuInSe (CIS) Tandem Solar cells
EAGER:TDM 太阳能电池:高效钙钛矿和 CuInSe (CIS) 串联太阳能电池
  • 批准号:
    1665449
  • 财政年份:
    2017
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Workshop: Quantum Information on a Chip; October 12-14, 2015 , Universita Degli Studi di Padova, Padua, Italy,
研讨会:芯片上的量子信息;
  • 批准号:
    1543808
  • 财政年份:
    2015
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a III-Nitride MOCVD for Nanophotonics and Nanoelectronics
MRI:获取用于纳米光子学和纳米电子学的 III 族氮化物 MOCVD
  • 批准号:
    1429468
  • 财政年份:
    2014
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Travel assistance for US university professors and students to attend the PIERS conference in Guangzhou, China (August 25-28, 2014)
为美国大学教授和学生参加在中国广州举行的 PIERS 会议(2014 年 8 月 25 日至 28 日)提供交通补助
  • 批准号:
    1419479
  • 财政年份:
    2014
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Solar Energy Scavenging Using Nano-Antennas and Tunneling Diodes
使用纳米天线和隧道二极管收集太阳能
  • 批准号:
    1029925
  • 财政年份:
    2010
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Industry/University Cooperative Research Center for Optoelectronic Devices, Interconnects, and Packaging
光电器件、互连和封装产学合作研究中心
  • 批准号:
    9520255
  • 财政年份:
    1995
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Continuing Grant
Planning Grant for a Joint Industry/University Cooperative Center Called the Optoelectrnic Circuitry and Packaging (OCP) Center
为名为光电电路和封装(OCP)中心的工业/大学联合合作中心规划拨款
  • 批准号:
    9312427
  • 财政年份:
    1993
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Semiconductor Diode Laser Amplifiers for High Performance Photonic Switching Systems
用于高性能光子开关系统的半导体二极管激光放大器
  • 批准号:
    8818797
  • 财政年份:
    1989
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

多体量子电动力学理论与应用
  • 批准号:
    22373057
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
粲偶素稀有衰变的格点量子色动力学研究
  • 批准号:
    12305094
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金刚石IV族色心量子信息器件的激发态动力学研究
  • 批准号:
    62304159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cl+CH3D反应中费米耦合效应的高维量子动力学研究
  • 批准号:
    22373111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Operation Mechanism of CLCF Fluoride/Proton Antiporter
CLCF氟化物/质子逆向转运蛋白的运行机制
  • 批准号:
    10201208
  • 财政年份:
    2021
  • 资助金额:
    $ 39.44万
  • 项目类别:
Carrier Dynamics in GaN films and InGaN/GaN Quantum Wells
GaN 薄膜和 InGaN/GaN 量子阱中的载流子动力学
  • 批准号:
    2297400
  • 财政年份:
    2019
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Studentship
Magnetoimpedance Study on Carrier Dynamics in Orgaic Semiconductor
有机半导体载流子动力学的磁阻抗研究
  • 批准号:
    18H01951
  • 财政年份:
    2018
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hot carrier dynamics in quantum dot superlattice solar cells
量子点超晶格太阳能电池中的热载流子动力学
  • 批准号:
    17K14659
  • 财政年份:
    2017
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
THz carrier dynamics in single-molecule junctions
单分子结中的太赫兹载流子动力学
  • 批准号:
    16K17481
  • 财政年份:
    2016
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了