GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
基本信息
- 批准号:1508907
- 负责人:
- 金额:$ 22.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet of Things (IoT), also referred to as the Industrial Internet, is projected to be modern society's third great revolution following the Industrial Revolution and the Communications Revolution. A great proportion of the communications performed in the IoT will be between devices, in so-called machine-to-machine (M2M) systems, and in an increasingly automated manner. The environments in which IoT devices will operate will often be more complex, cluttered and challenging for wireless communications than either today's ubiquitous mobile communications or wireless data networks. This research addresses a critical component of the IoT wireless communications link, namely the antenna systems for these small, inexpensive devices. New antenna designs are needed, along with new methods for low-cost digital manufacturing and for testing the devices under realistic operating conditions. The research findings of this project have potential to positively impact the robustness of not only M2M systems but also systems utilized in dynamic environments such vehicle-to-vehicle, first-responder and military field operations. Furthermore, the underlying knowledge could influence the future designs of medical devices, on-body sensor systems, robotic systems, un-manned ground and air vehicles and similar applications where customization, form factor, production volume or other considerations make direct digital manufacturing (DDM) an attractive option. Graduate students from the University of Vermont and the University of South Florida will collaborate with the industry participants from Harris Corporation. The investigators will also work closely with STEM programs targeting high school students, in particular those students from underrepresented and disadvantaged populations, to develop activities that provide insights on the foundations that make wireless communications possible. The proposed research will lead to techniques and technology that enable wireless devices for Internet of Things (IoT) applications operating at 2.45, 5 and 60 GHz to determine and adapt to the channel impairments using new antenna system designs. Advanced manufacturing and integration approaches will be studied with the goal of reducing the size and cost of these devices and systems. The intellectual merit lies in the fusion of ideas from propagation modeling, antenna design and direct digital manufacturing (DDM). Previous work by the investigators, who have a long and productive history of collaboration, has contributed new understanding of channel conditions for highly cluttered environments, 3D antenna designs, and the use of DDM for microwave circuit and antenna fabrication. The work will leverage this expertise in the investigation of new channel models and the resulting theory that will inform the study of next generation, adaptive antenna systems. A new approach to quantifying antenna system performance based on collecting and analyzing antenna responses to a wide range of channel conditions is the basis for the proposed propagation studies. The orientation, spacing and reconfiguration of antenna elements in a multi-polarization system will be studied using a statistical characterization method. Advanced DDM processes will be investigated using a unique 3D printer that combines plastic extrusion, paste micro-dispensing and laser processing in a single tool. The new processes will provide the ability to realize 3D structural electronics that comprise package-integrated antenna systems that include ferroelectric tuning networks. The realization of electronically-tunable DDM devices requires a new process to merge a technology with length scales on the order of 10's of microns (DDM) with one having length scales on the order of microns (integrated circuits). The eventual goal of demonstrating, in collaboration with GOALI partner Harris Corp., high performance mm-wave (60 GHz) antenna systems of this nature necessitates tight control over feature sizes and the quality and surface features of printed conductors; the use of pulsed laser processing will be studied as a means to address these challenges.
物联网(物联网)也称为工业互联网,预计是工业革命和通信革命后现代社会的第三次大革命。 在物联网中执行的很大一部分通信将在设备之间,所谓的机器对机器(M2M)系统以及越来越自动化的方式中。 与当今无处不在的移动通信或无线数据网络相比,物联网设备将在无线通信中运行的环境通常会更复杂,混乱且具有挑战性。 这项研究介绍了IoT无线通信链路的关键组成部分,即这些小型,廉价设备的天线系统。需要新的天线设计,以及用于低成本数字制造的新方法以及在现实操作条件下测试设备的新方法。该项目的研究结果有可能对不仅M2M系统的鲁棒性产生积极影响,而且还可以在动态环境中使用的系统,例如车辆到车辆,第一响应者和军事野外操作。此外,潜在的知识可能会影响医疗设备,体内传感器系统,机器人系统,无人接地和航空车辆的未来设计以及类似的应用,在这些应用程序中,自定义,外形,生产量或其他考虑因素使直接数字制造(DDM)成为有吸引力的选择。佛蒙特大学和南佛罗里达大学的研究生将与哈里斯公司的行业参与者合作。研究人员还将与针对高中生的STEM计划紧密合作,尤其是那些来自代表性不足和处于弱势群体的学生,以开发有关使无线通信成为可能的基础的见解的活动。拟议的研究将导致技术和技术,以实现在2.45、5和60 GHz运行的物联网(IoT)应用程序的无线设备,以使用新的天线系统设计来确定并适应渠道损伤。 将研究先进的制造和集成方法,目的是降低这些设备和系统的大小和成本。 知识分子的优点在于传播建模,天线设计和直接数字制造(DDM)的思想融合。 研究人员的先前工作具有悠久而富有成效的协作历史,对高度混乱的环境,3D天线设计以及DDM用于微波电路和天线制造的通道条件有了新的了解。这项工作将利用对新渠道模型的调查和由此产生的理论的专业知识,该理论将为下一代,自适应天线系统的研究提供信息。一种基于收集和分析天线对广泛通道条件的天线反应的天线系统性能的新方法是提出的繁殖研究的基础。将使用统计表征方法研究天线元素的定向,间距和重新配置。将使用独特的3D打印机研究高级DDM工艺,该过程将塑料挤出,粘贴微分解和激光处理结合在单个工具中。 新工艺将提供实现3D结构电子设备的能力,该电子设备包含包装集成的天线系统,其中包括铁电调谐网络。电子可调的DDM设备的实现需要一个新的过程,以合并一项在10个微米(DDM)阶的长度尺度的技术,其中一个在微米(集成电路)上具有长度尺度。最终的目标是与Goali合作伙伴Harris Corp.合作,高性能MM-WAVE(60 GHz)这种性质的天线系统需要严格控制特征大小以及印刷导体的质量和表面特征;将研究脉冲激光处理的使用作为解决这些挑战的一种手段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jeff Frolik其他文献
On Performance Characterization of Harmonic Transponders
谐波应答器性能表征
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:4
- 作者:Milan Polivka;Jeff FrolikMilan Polivka;Jeff Frolik
- 通讯作者:Jeff FrolikJeff Frolik
共 1 条
- 1
Jeff Frolik的其他基金
Collaborative Research: A Systems-Centric Foundation for Electrical and Computer Engineering Education
协作研究:以系统为中心的电气和计算机工程教育基础
- 批准号:11404501140450
- 财政年份:2012
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
MRI: Acquisition of a 3D Terrestrial Laser Scanner for the Temporal-Morphological Study of Manmade and Natural Structures
MRI:获取 3D 地面激光扫描仪,用于人造和自然结构的时间形态研究
- 批准号:12290451229045
- 财政年份:2012
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
GOALI/Collaborative Research: Passive, Diamagnetic Inertial Sensing Integrated with High-Sensitivity Telemetry
GOALI/合作研究:无源抗磁惯性传感与高灵敏度遥测集成
- 批准号:09257280925728
- 财政年份:2009
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
Collaborative Project: MUSE - A Model for Undergraduate Learning of Complex-Engineered Systems
合作项目:MUSE - 复杂工程系统本科学习模型
- 批准号:07173260717326
- 财政年份:2007
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
A Comprehensive, Laboratory-Enchanced Signals and Communications Curriculum
全面的实验室增强信号和通信课程
- 批准号:03101500310150
- 财政年份:2003
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:62203348
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
- 批准号:52202452
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:52105525
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:22451172245117
- 财政年份:2022
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:21298252129825
- 财政年份:2022
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:21297762129776
- 财政年份:2022
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:22197882219788
- 财政年份:2022
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:23022172302217
- 财政年份:2022
- 资助金额:$ 22.56万$ 22.56万
- 项目类别:Standard GrantStandard Grant