Holomorphic Dynamics in one and several variables

一变量和多变量的全纯动力学

基本信息

  • 批准号:
    1505342
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Dynamical systems are mathematical models that allow researchers to study physical phenomenon that evolve with time: from motion of the planets to stock markets. The PI studies holomorphic dynamics, which refers to iterations of certain complex-valued maps that admit a rich geometry. The subject has numerous interactions with other areas of mathematics, in particular with the important subjects of Teichmuller Theory and Multidimensional Complex Analysis. The PI will continue her work concerning geometric aspects of holomorphic dynamics and in particular she will work to extend certain parts of the the theory from dynamics of one complex variable to several complex variables. The PI will continue to provide special topical lectures to undergraduate and graduate students in the hope of exciting the interest of students in the field of dynamical systems and, more broadly, in mathematics.The link between holomorphic dynamics and Teichmuller Theory can be to a large extent explained by holomorphic motions. The PI, together with collaborators, suggest a geometric approach to the proof of Slodkowski's lambda lemma. We relate holomorphic motions to the technique of filling totally real manifolds by holomorphic discs. We plan to use this approach to investigate the h-principle for holomorphic motions over Riemann surfaces. Thurston's theorem on postcritically finite rational maps is one of the central results in one-dimensional holomorphic dynamics. Building on Thurston's work, A. Epstein introduced deformation spaces, which give a unified approach to transversality results in holomorphic dynamics. The PI, together with collaborators, will investigate certain topological properties of these deformation spaces. In one-dimensional holomorphic dynamics to a large extent the orbits of critical points determine the dynamics of the map. For an automorphism of complex plane there are no critical points however there are various analogs of the critical points in different dynamically defined regions. The research will investigate these critical loci and their application to the construction of topological models. We also study the non-linearizable germs of analytic diffeomorphisms of complex plane.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatiana Firsova其他文献

Tatiana Firsova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

地球物理流体动力学中的一些方程研究
  • 批准号:
    11971068
  • 批准年份:
    2019
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一些流体力学方程的长时间动力学行为
  • 批准号:
    11726625
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
一些趋化-扩散-对流耦合系统的适定性和非线性动力学性态
  • 批准号:
    11761063
  • 批准年份:
    2017
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
关于一些流体动力学方程的数学理论
  • 批准号:
    11771423
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
一些流体力学方程的长时间动力学行为
  • 批准号:
    11726626
  • 批准年份:
    2017
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2349865
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2054989
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Pulse dynamics of a 3-component reaction-diffusion system in neighborhoods of several bifurcation points
多个分叉点附近三分量反应扩散系统的脉冲动力学
  • 批准号:
    15K04995
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic Dynamics in One and Several Variables
一变量和多变量的全纯动力学
  • 批准号:
    1408261
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Brain-penetrating acetylcholinesterase reactivators for several organophosphates
几种有机磷酸酯的脑穿透性乙酰胆碱酯酶再激活剂
  • 批准号:
    8544717
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了