EAGER-DynamicData: Real-time Discovery and Timely Event Detection from Dynamic and Multi-Modal Data Streams
EAGER-DynamicData:动态和多模态数据流的实时发现和及时事件检测
基本信息
- 批准号:1462245
- 负责人:
- 金额:$ 26.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Emergency responders (police, fire, ambulance services) have more and more access to more and more data stream: sensor readings, security cameras, personal reports (via cellphone, texts, tweets), GPS data etc. The availability of these data streams presents enormous opportunities - but also poses fundamental challenges:* Data streams arrive from a wide variety of sources and contain many diverse features; this makes it difficult to extract information from the streams, and especially, to integrate information from different streams. * Knowledge learned from past events must be transferred to knowledge about present (and future) events. Because no two events are ever identical, the knowledge learned from past events must be transferred to knowledge about present events that are not identical but only "similar" - and in ways that may not be known in advance and so must be discovered. * Learning and detection - and the actions that follow learning and detection ? must take place in a timely fashion: it is of little use to learn how to respond to an emergency only long after the emergency has passed. To accomplish this, the proposed work relies on new methods to discover what is relevant both in each individual data stream and across data streams, and to learn and exploit the similarities between the past and the present. This work is transformative and success in this project has the potential to lead to enormously enhanced, even life-saving, responses to emergencies of many sorts. Existing approaches treat individual data streams by exploiting particular physical characteristics of the signal, and treat multiple data streams in an ad-hoc fashion. These approaches miss the fact that it is not the physical characteristics of the signal that are important but rather the (semantic) information in the signal, and that there are connections between the information in different data streams. This project transforms the problem of learning from multiple (multi-modal) data streams by focusing on the relevance of information in each data stream, across data streams, and through time. The relevant information will generally be different for different events and different purposes and will not be known in advance, so relevance must be learned. To do this, this project organizes the information available at each moment in time in terms of contexts which encode exogenous metadata (e.g., when, where and by whom data was gathered) and endogenous metadata (e.g., features and statistics extracted from the data). In general, there are an enormous number and variety of contexts, but the most relevant information is embedded in only a few contexts. Because these most relevant contexts will not generally be known in advance and will be different in different scenarios, this project will develop a new class of methods and algorithms to discover the relevant contexts from multiple dynamic, multi-modal and high-dimensional data streams, and to use what is discovered to learn, detect and respond in a timely fashion. Because no two events are exactly the same, this project will develop of a new class of methods and algorithms for the discovery of relevant semantic similarities and their application, making it possible to transfer knowledge learned from past events to knowledge about present events. This work requires the development of highly innovative methodology and techniques that go far beyond existing work (high risk) and are potentially transformative for a wide variety of applications ranging from event detection to actionable intelligence.
紧急响应人员(警察、消防、救护车服务)越来越多地访问越来越多的数据流:传感器读数、安全摄像头、个人报告(通过手机、短信、推文)、GPS 数据等。这些数据流的可用性表明巨大的机遇 - 但也带来了根本性的挑战:* 数据流来自各种来源并包含许多不同的特征;这使得从流中提取信息变得困难,尤其是集成来自不同流的信息。 * 从过去事件中学到的知识必须转化为关于当前(和未来)事件的知识。 因为没有两个事件是完全相同的,所以从过去事件中学到的知识必须转化为关于当前事件的知识,这些知识不相同,而只是“相似”——并且以事先无法知道的方式,因此必须被发现。 * 学习和检测——以及学习和检测之后的行动?必须及时进行:在紧急情况过去很久之后才学习如何应对紧急情况是没有多大用处的。 为了实现这一目标,所提出的工作依赖于新的方法来发现每个单独的数据流和跨数据流中的相关内容,并学习和利用过去和现在之间的相似性。 这项工作具有变革性,该项目的成功有可能大大增强对多种紧急情况的反应,甚至挽救生命。现有方法通过利用信号的特定物理特性来处理单个数据流,并以特定方式处理多个数据流。 这些方法忽略了这样一个事实:重要的不是信号的物理特性,而是信号中的(语义)信息,并且不同数据流中的信息之间存在联系。该项目通过关注每个数据流中、跨数据流和时间范围内信息的相关性,改变了从多个(多模式)数据流中学习的问题。 对于不同的事件和不同的目的,相关信息通常会有所不同,并且不会提前获知,因此必须学习相关性。 为此,该项目根据编码外源元数据(例如,何时、何地以及由谁收集数据)和内源元数据(例如,从数据中提取的特征和统计数据)的上下文来组织每个时刻可用的信息。 。一般来说,上下文的数量和种类繁多,但最相关的信息仅嵌入在少数上下文中。由于这些最相关的上下文通常不会提前知道,并且在不同的场景中会有所不同,因此该项目将开发一类新的方法和算法,以从多个动态、多模态和高维数据流中发现相关上下文,并利用发现的信息来及时学习、检测和响应。 由于没有两个事件是完全相同的,因此该项目将开发一类新的方法和算法,用于发现相关语义相似性及其应用,从而可以将从过去事件中学到的知识转移到有关当前事件的知识。这项工作需要开发高度创新的方法和技术,远远超出现有工作(高风险),并且对于从事件检测到可操作情报的各种应用具有潜在的变革性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihaela van der Schaar其他文献
Generalized Global Bandit and Its Application in Cellular Coverage Optimization
广义全局强盗及其在蜂窝覆盖优化中的应用
- DOI:
10.1109/jstsp.2018.2798164 - 发表时间:
2018-01 - 期刊:
- 影响因子:7.5
- 作者:
Cong Shen;Ruida Zhou;Cem Tekin;Mihaela van der Schaar - 通讯作者:
Mihaela van der Schaar
Generalization—a key challenge for responsible AI in patient-facing clinical applications
泛化——负责任的人工智能在面向患者的临床应用中的一个关键挑战
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:15.2
- 作者:
Lea Goetz;Nabeel Seedat;Robert Vandersluis;Mihaela van der Schaar - 通讯作者:
Mihaela van der Schaar
Using Machine Learning to Individualize Treatment Effect Estimation: Challenges and Opportunities
使用机器学习进行个性化治疗效果估计:挑战和机遇
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alicia Curth;Richard W. Peck;Eoin McKinney;James Weatherall;Mihaela van der Schaar - 通讯作者:
Mihaela van der Schaar
Mihaela van der Schaar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihaela van der Schaar', 18)}}的其他基金
CIF: Small: Networks: Evolution, Learning and Social Norms
CIF:小型:网络:进化、学习和社会规范
- 批准号:
1524417 - 财政年份:2015
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Planning Grant: I/UCRC for Semantic Computing
规划资助:I/UCRC 用于语义计算
- 批准号:
1338935 - 财政年份:2013
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
CIF: Small: Intervention: A Design Framework for Resource Sharing and Exchanges Among Self-interested Users
CIF:小:干预:利己用户之间资源共享和交流的设计框架
- 批准号:
1218136 - 财政年份:2012
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
CSR: Small: Dynamic Construction and Configuration of Classifier Topologies for Real-time Stream Mining Systems
CSR:小型:实时流挖掘系统的分类器拓扑的动态构建和配置
- 批准号:
1016081 - 财政年份:2010
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
NEDG: A New Systematic Framework for Cross-layer Optimization
NEDG:跨层优化的新系统框架
- 批准号:
0831549 - 财政年份:2008
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Knowledge and Strategic Learning in Multi-user Communications
多用户通信中的知识和策略学习
- 批准号:
0830556 - 财政年份:2008
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Complexity Optimization Strategies for Adaptive Multimedia Receivers
自适应多媒体接收器的复杂度优化策略
- 批准号:
0541453 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
CSR--EHS: Dynamic Resource Management for Multimedia Applications on Embedded Systems
CSR--EHS:嵌入式系统多媒体应用的动态资源管理
- 批准号:
0509522 - 财政年份:2005
- 资助金额:
$ 26.68万 - 项目类别:
Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
- 批准号:
0448489 - 财政年份:2005
- 资助金额:
$ 26.68万 - 项目类别:
Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
- 批准号:
0541867 - 财政年份:2005
- 资助金额:
$ 26.68万 - 项目类别:
Continuing Grant
相似海外基金
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
- 批准号:
1462363 - 财政年份:2015
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant