CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
基本信息
- 批准号:1453661
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic equations arise as fundamental models in many applications such as rarefied gas dynamics, plasma physics, nuclear engineering, semiconductor device design, traffic networking, and swarming. Due to the high-dimensionality of such models, conventional numerical partial differential equation (PDE) solvers will incur prohibitive computational cost, limiting their applications to real-world problems. This research project aims at addressing this issue by developing discontinuous Galerkin (DG) methods by the sparse grid approach. The resulting schemes enjoy the excellent properties that the traditional DG methods offer, while still being able to achieve high-order accuracy with a significant reduction in the required degrees of freedom. The research will have direct impact on the efficient and robust computations of kinetic equations and on other application areas involving high-dimensional PDEs. The research plan is complemented by educational and outreach activities involving the training of undergraduates, graduate students, and postdoctoral associates, and fostering collaborations among female researchers in computational mathematics. The research plan consists of several coherent projects, ranging from algorithm design, analysis, and implementation to application. In particular, the investigator plans to perform detailed studies of sparse tensor product polynomial spaces and to construct DG methods on sparse grids for model equations. The methods will be further developed for kinetic equations with attention to numerical challenges specific to Vlasov and Boltzmann equations. The PI will also develop similar numerical schemes for PDEs arising from areas such as optimal control and mathematical finance. Theoretical issues including stability, conservation, and error estimates, and computational issues including efficient linear solvers, adaptivity, and parallel implementations will be explored. The educational goals of this project are to develop a pipeline for the recruitment, retention, and early research exposure of undergraduate students, to continue integrated training and mentoring of graduate students and postdocs, and to promote collaborations and build a network of support for early career female researchers. Undergraduates, graduate students, and postdocs will be directly involved in every aspect of the proposed research. Summer research and career development workshops at Michigan State University will be established to promote research collaborations and build a community of support for early career female researchers.
动力学方程作为许多应用中的基本模型出现,例如稀薄气体动力学、等离子体物理、核工程、半导体器件设计、交通网络和集群。 由于此类模型的高维性,传统的数值偏微分方程(PDE)求解器将产生高昂的计算成本,限制了它们在现实世界问题中的应用。本研究项目旨在通过稀疏网格方法开发不连续伽辽金(DG)方法来解决这个问题。由此产生的方案具有传统 DG 方法所提供的优异特性,同时仍然能够实现高阶精度,同时显着降低所需的自由度。该研究将对动力学方程的高效和鲁棒计算以及涉及高维偏微分方程的其他应用领域产生直接影响。该研究计划还辅以教育和外展活动,包括对本科生、研究生和博士后的培训,以及促进计算数学领域女性研究人员之间的合作。 该研究计划由几个连贯的项目组成,从算法设计、分析、实现到应用。特别是,研究人员计划对稀疏张量积多项式空间进行详细研究,并在稀疏网格上构建模型方程的 DG 方法。这些方法将进一步开发用于动力学方程,并关注 Vlasov 和 Boltzmann 方程特有的数值挑战。 PI 还将为最优控制和数学金融等领域的偏微分方程开发类似的数值方案。将探讨包括稳定性、守恒和误差估计在内的理论问题,以及包括高效线性求解器、自适应性和并行实现在内的计算问题。该项目的教育目标是为本科生的招募、保留和早期研究接触开发一条渠道,继续对研究生和博士后进行综合培训和指导,并促进合作并建立早期职业支持网络女性研究人员。本科生、研究生和博士后将直接参与拟议研究的各个方面。将在密歇根州立大学设立夏季研究和职业发展研讨会,以促进研究合作并为早期职业女性研究人员建立一个支持社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingda Cheng其他文献
Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems
无限均匀恒星系统一维Vlasov-Poisson方程的数值研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yingda Cheng;I. Gamba - 通讯作者:
I. Gamba
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications
基于自适应高阶分段多项式的稀疏网格配置方法及其应用
- DOI:
10.1016/j.jcp.2020.109770 - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
Zhanjing Tao;Yan Jiang;Yingda Cheng - 通讯作者:
Yingda Cheng
Discontinuous Galerkin methods for the Boltzmann‐Poisson systems in semiconductor device simulations
半导体器件模拟中玻尔兹曼-泊松系统的不连续伽辽金方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yingda Cheng;I. Gamba;A. Majorana;Chi - 通讯作者:
Chi
Robust Implicit Adaptive Low Rank Time-Stepping Methods for Matrix Differential Equations
矩阵微分方程的鲁棒隐式自适应低秩时间步进方法
- DOI:
10.48550/arxiv.2402.05347 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Appelö;Yingda Cheng - 通讯作者:
Yingda Cheng
A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations
玻尔兹曼-泊松方程间断伽辽金法的简要概述
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yingda Cheng;I. Gamba;A. Majorana;Chi - 通讯作者:
Chi
Yingda Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingda Cheng', 18)}}的其他基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2011838 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720023 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Developing Energy-Conserving Deterministic Solvers for Kinetic Electromagnetic Plasma Simulations
开发用于动力学电磁等离子体模拟的节能确定性求解器
- 批准号:
1318186 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1217563 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1016001 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
南亚东南亚刀耕火种所致活跃火发生过程和发展机制研究
- 批准号:42371282
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
血小板内皮聚集受体1在常染色体显性遗传性多囊肾病发生发展中的作用及机制研究
- 批准号:82300799
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
O-GlcNAc糖基化修饰稳定YTHDC1蛋白促进胶质母细胞瘤发展的机制研究
- 批准号:82303835
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
发展方程的时间最优控制的精细性质
- 批准号:12371450
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IL17 dependent angiocrine signaling drives inflammation in alcohol associated hepatitis
IL17 依赖性血管分泌信号传导驱动酒精相关性肝炎的炎症
- 批准号:
10837927 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Development of novel malaria pre-erythrocytic vaccine antigens targeting Plasmodium sporozoite liver infection
针对疟原虫子孢子肝脏感染的新型疟疾前红细胞疫苗抗原的开发
- 批准号:
10832263 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Development of novel malaria pre-erythrocytic vaccine antigens targeting Plasmodium sporozoite liver infection
针对疟原虫子孢子肝脏感染的新型疟疾前红细胞疫苗抗原的开发
- 批准号:
10667817 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: