Numerical Inversion of the Laplace Transform and its Applications to Evolution Equations

拉普拉斯变换的数值反演及其在演化方程中的应用

基本信息

  • 批准号:
    1008101
  • 负责人:
  • 金额:
    $ 10.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

JaraDMS-1008101 The investigator studies the theory and applications of thenumerical inversion of the vector-valued Laplace transform. Theobjectives are (i) to extend the investigator's results for thenumerical inversion of the Laplace transform beyond thenoise-free case, (ii) to develop new approximation methods forthe numerical inversion of the vector-valued Laplace transform,(iii) to show that the inversion of the Laplace transformtogether with the theory of finite elements provide a solidfoundation for the numerical approximation of solutions ofevolution equations of convolution type, (iv) to apply theapproximation methods to problems arising from transport inmultiscale porous materials, and (v) to provide researchexperience for undergraduate students. The main idea is thatapproximation methods for the shift operator semigroup on thespace of continuous and exponentially bounded functions withvalues in a general Banach space translates into approximationmethods for the inversion of the Laplace transform of thesefunctions. Evolution processes arise in many scientific problems, suchas fluid flows, image processing, mechanical systems, relativity,mathematical finance, and mathematical biology. These processesare described by the solutions of certain integro-partialdifferential equations. However, in most of these cases, thesolutions cannot be calculated explicitly because either theycannot be found or they are not obtained in a plain algebraicform. Thus, in order to obtain an accurate description of theevolution process, one needs to develop accurate approximationsto the solutions of these equations. The scalable methodsrecently developed by the investigator and his collaboratorsconcerning the Laplace transform provide accurate approximationsto solutions of integro-partial differential equations ofconvolution type. The principal investigator further developsand implements new approximation methods, and uses these methodsfor the accurate description of different evolution processes. Undergraduate research experience is provided to students byusing the different methods to approximate the solutions ofproblems related to transport in multiscale porous materials,like oil and gas exploration, or controlling underground sourcesof pollution such as high-level radioactive waste andgeologically stored carbon dioxide.
JaraDMS-1008101 研究人员研究向量值拉普拉斯变换的数值反演的理论和应用。 目标是(i)将拉普拉斯变换的数值反演研究人员的结果扩展到无噪声情况之外,(ii)为向量值拉普拉斯变换的数值反演开发新的近似方法,(iii)证明反演拉普拉斯变换的原理与有限元理论一起为卷积型演化方程的解的数值近似提供了坚实的基础,(iv)应用多尺度多孔材料输运问题的近似方法,以及(v)为本科生提供研究经验。 主要思想是,将一般Banach空间中的值的连续指数有界函数空间上的移位算子半群的逼近方法转化为这些函数的拉普拉斯变换的逆的逼近方法。 进化过程出现在许多科学问题中,例如流体流动、图像处理、机械系统、相对论、数学金融和数学生物学。 这些过程通过某些积分偏微分方程的解来描述。 然而,在大多数情况下,无法明确计算解,因为它们要么无法找到,要么无法以简单的代数形式获得。 因此,为了获得进化过程的准确描述,需要对这些方程的解进行精确的近似。 研究者和他的合作者最近开发的关于拉普拉斯变换的可扩展方法为卷积型积分偏微分方程的解提供了精确的近似。 首席研究员进一步开发和实现了新的近似方法,并利用这些方法来准确描述不同的进化过程。通过使用不同的方法来近似解决与多尺度多孔材料传输相关的问题(例如石油和天然气勘探)或控制地下污染源(例如高放射性废物和地质储存的二氧化碳),为学生提供本科研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricio Jara其他文献

Patricio Jara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

先导极性“反转”及其触发的二次放电起始过程的观测研究
  • 批准号:
    42305070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于靶向性PIC构建的纳米反转型载药微泡增效CRPC化疗的研究
  • 批准号:
    82373306
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向高效乙烷/乙烯反转分离的沸石型MOFs材料的设计合成与性能研究
  • 批准号:
    52373212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
热质耦合作用下高温高含气泵反转作液力透平获能影响机理研究
  • 批准号:
    52376036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
室温强氮气吸附材料的构筑及N2/CH4反转分离的研究
  • 批准号:
    22371221
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
  • 批准号:
    EP/Z000653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.01万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 10.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 10.01万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Conformational Inversion in Heterotriangulenes for Ferroelectric Switching
LEAPS-MPS:用于铁电开关的异三角烯构象反转
  • 批准号:
    2316772
  • 财政年份:
    2023
  • 资助金额:
    $ 10.01万
  • 项目类别:
    Standard Grant
Collaborative Research: The Relationship between the Trade Wind Inversion Layer and the Seasonal Development of the Southeast Pacific Inter-Tropical Convergence Zone (ITCZ)
合作研究:信风逆温层与东南太平洋热带辐合带(ITCZ)季节发展的关系
  • 批准号:
    2303225
  • 财政年份:
    2023
  • 资助金额:
    $ 10.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了