Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints

动态输运模型和状态约束控制问题的不连续伽辽金方法的发展

基本信息

  • 批准号:
    1217563
  • 负责人:
  • 金额:
    $ 7.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-10 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to develop and analyze novel discontinuous Galerkin (DG) methods for solving partial differential equations arising from various application areas. The DG method is a class of finite element methods using completely discontinuous piecewise polynomial space for the numerical solution and the test functions. Those robust, compact, locally conservative methods can treat arbitrarily unstructured meshes and are ideal for hp-adaptive strategies. The good properties of the scheme call for further research in areas that are traditionally not solved by DG methods. In this grant proposal, the PI plans to conduct research in the following directions: (1) a positivity-preserving DG method for solving the kinetic equations, including the Boltzmann equations and Vlasov equations, (2) application of the proposed method to solar cell/semiconductor device simulations and plasma physics, (3) a novel DG solver for the Hamilton-Jacobi equations and its applications in control problems with state constraints. The proposed activity lies between algorithm development, analysis and applications. Developing robust, high-order accurate, cost-efficient numerical algorithms for kinetic models and control problem is very challenging, not only because of the high dimensionality of such models, but also because of the fact that a deep understanding of the underlying physics is required. The eventual goal is to produce solvers that are computationally efficient and suit the need for applications. The PI's work arises from the computational demand of real world applications. Many ideas developed in this proposal will have straightforward applications and impacts in semiconductor device simulations, high-efficiency fuel cell modeling, control problems and plasma physics. The PI actively interacts with students and faculty members in mathematics, physics, electrical engineering and chemistry departments. In addition, the PI will integrate the project with the training of graduate students in order to communicate in a broader context.
该项目的目标是开发和分析新颖的不连续伽辽金 (DG) 方法,用于求解各个应用领域中产生的偏微分方程。 DG 方法是一类使用完全不连续分段多项式空间进行数值解和测试函数的有限元方法。这些稳健、紧凑、局部保守的方法可以处理任意非结构化网格,并且是 HP 自适应策略的理想选择。该方案的良好特性需要在传统上 DG 方法无法解决的领域进行进一步研究。在本次资助提案中,PI计划在以下方向进行研究:(1)用于求解动力学方程(包括Boltzmann方程和Vlasov方程)的保正性DG方法,(2)该方法在太阳能电池中的应用/半导体器件模拟和等离子体物理,(3) 一种用于 Hamilton-Jacobi 方程的新型 DG 求解器及其在具有状态约束的控制问题中的应用。 拟议的活动介于算法开发、分析和应用之间。 为动力学模型和控制问题开发鲁棒、高阶精确、经济高效的数值算法非常具有挑战性,不仅因为此类模型的维度很高,而且还因为需要对基础物理有深入的了解。最终目标是产生计算效率高且适合应用需求的求解器。 PI 的工作源于现实世界应用程序的计算需求。该提案中提出的许多想法将在半导体器件模拟、高效燃料电池建模、控制问题和等离子体物理学中具有直接的应用和影响。 PI 积极与数学、物理、电气工程和化学系的学生和教师互动。 此外,PI还将把该项目与研究生的培训结合起来,以便在更广泛的背景下进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingda Cheng其他文献

Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems
无限均匀恒星系统一维Vlasov-Poisson方程的数值研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba
  • 通讯作者:
    I. Gamba
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications
基于自适应高阶分段多项式的稀疏网格配置方法及其应用
  • DOI:
    10.1016/j.jcp.2020.109770
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhanjing Tao;Yan Jiang;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
Discontinuous Galerkin methods for the Boltzmann‐Poisson systems in semiconductor device simulations
半导体器件模拟中玻尔兹曼-泊松系统的不连续伽辽金方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba;A. Majorana;Chi
  • 通讯作者:
    Chi
Robust Implicit Adaptive Low Rank Time-Stepping Methods for Matrix Differential Equations
矩阵微分方程的鲁棒隐式自适应低秩时间步进方法
  • DOI:
    10.48550/arxiv.2402.05347
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Appelö;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations
玻尔兹曼-泊松方程间断伽辽金法的简要概述
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba;A. Majorana;Chi
  • 通讯作者:
    Chi

Yingda Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingda Cheng', 18)}}的其他基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2011838
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1720023
  • 财政年份:
    2017
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
  • 批准号:
    1453661
  • 财政年份:
    2015
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Developing Energy-Conserving Deterministic Solvers for Kinetic Electromagnetic Plasma Simulations
开发用于动力学电磁等离子体模拟的节能确定性求解器
  • 批准号:
    1318186
  • 财政年份:
    2013
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
  • 批准号:
    1016001
  • 财政年份:
    2010
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多尺度目标瞬态/宽频带电磁特性的高效建模方法研究
  • 批准号:
    61901002
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
三维集成电路多物理场仿真快速算法研究及应用
  • 批准号:
    61871340
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
用于复杂多尺度电磁问题的新型非共形积分方程方法研究
  • 批准号:
    61801097
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
射频系统强电磁脉冲效应高效时域建模方法研究
  • 批准号:
    61871228
  • 批准年份:
    2018
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2011838
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of a method of moment based on discontinuous Galerkin method and Hdiv inner products
基于间断伽辽金法和Hdiv内积的矩量法的开发
  • 批准号:
    15K13418
  • 财政年份:
    2015
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A new development of mathematical theory of Discontinuous Galerkin FEM
间断伽辽金有限元数学理论的新发展
  • 批准号:
    15H03635
  • 财政年份:
    2015
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
  • 批准号:
    1453661
  • 财政年份:
    2015
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了