EAGER: A Graphical Approach for Choice Modeling

EAGER:选择建模的图形方法

基本信息

  • 批准号:
    1450848
  • 负责人:
  • 金额:
    $ 8.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

A central problem of interest to operations managers is how to use historical sales data to accurately predict revenues when offering a particular assortment of products. Such predictions are subsequently used in making important business decisions such as assortment planning, new product development, and demand estimation. Choice models are widely used in modeling the underlying customer behavior. Traditional choice models are either too simple to accurately reflect the nature of how people make decisions, or so complex that it is either computationally intractable to fit the model to historical data or to subsequently use it to make business decisions. This EArly-concept Grant for Exploratory Research (EAGER) project studies innovative and novel choice models that are designed to be computationally efficient for the decision problems of interest in revenue management and at the same time have strong predictive power. The results of the research will enable improved business decisions to be made while simultaneously reducing operational costs. It will provide key technologies in important business applications of assortment planning, new product development, brand value evaluation, demand estimation, optimal pricing, and revenue management. It will generate collaborations among the disciplines of operations management, economics, cognitive psychology, and machine learning. The research component is tightly integrated with the education plan, including a graduate course on probabilistic graphical models. Both undergraduate and graduate students will benefit from the research activities by engaging in research and applying the knowledge to solve real world problems.The suboptimal tradeoff of traditional choice models is due to the fact that these models are designed without computational efficiency in mind. In this era of tremendous increase in the scale of data being generated, computational efficiency is of primary concern. This project will build on graph-based probabilistic models such as random walks on graphs and probabilistic graphical models, and will lead to (a) development of new graph-based models for choice modeling designed for computational efficiency; (b) development of new methodologies for learning these models from historical purchase data; (c) development of novel inference algorithms for predicting the customer preferences from these models; and (d) development of new methodologies for solving optimization problems in revenue management with these models. The research will lay foundations of a new graph-based modeling approach for revenue management. The significance and novelty of the work lie in the fact that the design objective of the choice modeling is critically different from the traditional criteria used by economists and cognitive psychologists (such as describing the functional form of the underlying rational decision processes), which does not consider the computational efficiency of solving decision problems in revenue management. In contrast to this, choice models for making decisions based on massive modern datasets should have computational efficiency embedded into the models by design. The theory and models developed in this project will bring together ideas and techniques from probability theory and graph theory to jointly reason about uncertainty and complexity (such as probabilistic graphical models and random walks on graphs) as well as insights and tools from recent advances in revenue management (such as choice modeling using Markov chains). The research has a potential to advance our fundamental understanding in how people make decisions when presented with many options.
运营经理感兴趣的核心问题是如何使用历史销售数据在提供特定产品时准确预测收入。此类预测随后用于做出重要的业务决策,例如分类计划,新产品开发和需求估算。选择模型广泛用于建模潜在的客户行为。传统的选择模型要么太简单,无法准确地反映人们制定决策的性质,要么是如此复杂,以至于它在计算上棘手以适合该模型与历史数据拟合,或者随后使用它来做出业务决策。这项对探索性研究(急切)项目研究的早期概念赠款研究创新和新颖的选择模型,旨在计算对收入管理中感兴趣的决策问题和同时具有强大的预测能力。研究结果将使改进的业务决策能够同时降低运营成本。它将在各种计划,新产品开发,品牌价值评估,需求估算,最佳定价和收入管理的重要业务应用中提供关键技术。它将在运营管理,经济学,认知心理学和机器学习的学科之间建立合作。研究组成部分与教育计划紧密整合,包括有关概率图形模型的研究生课程。本科生和研究生都将通过研究研究并运用知识来解决现实世界问题,从研究活动中受益。传统选择模型的次优折衷是由于这些模型的设计而没有计算效率。在这个生成数据规模巨大增加的时代,计算效率是主要问题。该项目将基于基于图的概率模型,例如在图形上随机步行和概率图形模型,并将导致(a)开发用于计算效率的选择模型的新的基于图的模型; (b)开发从历史购买数据中学习这些模型的新方法; (c)开发用于预测这些模型客户偏好的新型推理算法; (d)开发使用这些模型在收入管理中解决优化问题的新方法。该研究将奠定基于收入管理的新的基于图的建模方法。这项工作的重要性和新颖性在于,选择建模的设计目标与经济学家和认知心理学家使用的传统标准(例如描述基本理性决策过程的功能形式)的传统标准截然不同,这并不考虑在收入管理中解决决策问题的计算效率。与此相比,基于大量现代数据集做出决策的选择模型应通过设计嵌入到模型中的计算效率。该项目中开发的理论和模型将汇集从概率理论和图理论到关于不确定性和复杂性的共同原因(例如概率图形模型和图形上的随机步行),以及收入管理最新进步(例如使用Markov Chains的选择建模)的洞察力和工具。这项研究有可能提高我们在提供许多选择时如何做出决策的基本理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sewoong Oh其他文献

Matrix Norm Estimation from a Few Entries
根据几个条目进行矩阵范数估计
Spectrum Estimation from a Few Entries
从几个条目进行频谱估计
  • DOI:
    10.1016/j.aml.2021.107342
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Khetan;Sewoong Oh
  • 通讯作者:
    Sewoong Oh
Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems
2017 年 ACM SIGMETRICS/计算机系统测量和建模国际会议论文集
Comparison of maxillary basal arch forms using the root apex in adult women with different skeletal patterns: A pilot study.
使用具有不同骨骼模式的成年女性的根尖比较上颌基弓形状:一项试点研究。
Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation
打破带宽障碍:几何自适应熵估计

Sewoong Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sewoong Oh', 18)}}的其他基金

Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2002664
  • 财政年份:
    2020
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Standard Grant
CIF: RI: Small: Information-theoretic measures of dependencies and novel sample-based estimators
CIF:RI:小:依赖性的信息论测量和新颖的基于样本的估计器
  • 批准号:
    1929955
  • 财政年份:
    2019
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Continuing Grant
CAREER: Social Computation: Fundamental Limits and Efficient Algorithms
职业:社会计算:基本限制和高效算法
  • 批准号:
    1927712
  • 财政年份:
    2019
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Continuing Grant
CIF: RI: Small: Information-theoretic measures of dependencies and novel sample-based estimators
CIF:RI:小:依赖性的信息论测量和新颖的基于样本的估计器
  • 批准号:
    1815535
  • 财政年份:
    2018
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Continuing Grant
CAREER: Social Computation: Fundamental Limits and Efficient Algorithms
职业:社会计算:基本限制和高效算法
  • 批准号:
    1553452
  • 财政年份:
    2016
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Continuing Grant
TWC: Small: Fundamental Limits in Differential Privacy
TWC:小:差异隐私的基本限制
  • 批准号:
    1527754
  • 财政年份:
    2015
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Standard Grant

相似国自然基金

跨媒介工程图形鲁棒水印理论与方法研究
  • 批准号:
    62372128
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于儿童图形化编程的数字创造力评价与干预方法研究
  • 批准号:
    62307007
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图形晶圆深亚波长缺陷的多模式光学检测方法
  • 批准号:
    52305584
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图形化编程中创意的评估与激发方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图形化编程中创意的评估与激发方法研究
  • 批准号:
    62207023
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
  • 批准号:
    10698708
  • 财政年份:
    2023
  • 资助金额:
    $ 8.79万
  • 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
  • 批准号:
    10366570
  • 财政年份:
    2022
  • 资助金额:
    $ 8.79万
  • 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
  • 批准号:
    10549831
  • 财政年份:
    2022
  • 资助金额:
    $ 8.79万
  • 项目类别:
A New Approach to Vascular Reconstruction using Graphical 3D Printing and Flow Modelling to create personalised precision engineered surgery
使用图形 3D 打印和流动建模进行血管重建的新方法,以创建个性化的精密工程手术
  • 批准号:
    463878
  • 财政年份:
    2022
  • 资助金额:
    $ 8.79万
  • 项目类别:
    Operating Grants
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
  • 批准号:
    10297893
  • 财政年份:
    2021
  • 资助金额:
    $ 8.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了