Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics

半球间极地电离层电动力学同化制图

基本信息

  • 批准号:
    1443703
  • 负责人:
  • 金额:
    $ 33.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-15 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

The Earth's main magnetic field geometry is not similar to that of a bar magnet centered and simply tilted about 11 degrees from the Earth's spin axis. The geomagnetic field has its North Pole located at ~1,200-km of the North Geographic Pole towards Canada, but its South Pole is located about 1,550-km from the South Geographic Pole in Antarctica towards Pacific Ocean. This asymmetry is caused by the non-dipolar nature of the Earth's magnetic field that leads to various hemispherical differences in the interaction of the solar wind plasma flow with the Earth's magnetosphere. Thus the solar wind's energy and momentum are deposited into the polar ionospheres of both the Northern and Southern Polar Regions asymmetrically, causing considerable diversity in different electrodynamic parameters of the polar ionosphere reported in past studies. As new instrumentation techniques are developed, it is important to invest in development of new data assimilation and inverse methods to assure a more complete extraction of geophysical information out of new observations.The magnetosphere-ionosphere coupling is not symmetrical in terms of high-latitude ionospheric convection, field-aligned currents, electromagnetic energy (Poynting) flux, auroral particle precipitation, and upper atmosphere (thermosphere) responses. This study will quantify the degree of instantaneous interhemispheric imbalance of the electromagnetic energy deposition via geomagnetic field-aligned currents and ionospheric convection electric fields, integrating quantification of all these variables into a unified framework. Multiple types of space-based and ground-based observations can be simultaneously analyzed, creating a coherent interhemispheric picture of global ionospheric electrodynamics via the community Assimilative Mapping of Ionospheric Electrodynamics (AMIE) software technique. In the past, the lack of observations in the Southern polar region in comparison with the Northern polar region precluded a comprehensive analysis of interhemispheric ionosphere electrodynamic variables, unless exclusively relying on space-based observations. The recent availability of data from ground-based magnetometers and high frequency (HF) radars in the Southern polar region is changing this situation. The proposed research is timely, using a creative, even transformative approach that takes advantage of new global interhemispheric observations available through the NSF-funded Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE), Super Dual Auroral Radar Network (SuperDARN), and SuperMAG database. This will help addressing fundamental questions of geospace research that have eluded conclusive explanation so far. Several electrodynamic variables will be self-consistently analyzed globally in both polar regions via the extensive assimilation of observational data. This study will contribute significantly to the research and development activities at the NOAA Space Weather Prediction Center (SWPC) where a new generation of AMIE mapping of interhemispheric high-latitude electrodynamics may become part of the services provided by SWPC to the U.S. Government agencies that address negative effects of space weather on the nationwide ground- and space-based technological systems. The updated AMIE will also become a common platform for active collaboration among national and international space scientists who study the global transfer of solar wind energy and momentum into the Earth's magnetosphere, ionosphere, and thermosphere. At last, this interesting and important scientific research provides an ideal opportunity for educational experience and training for a graduate student through direct involvement in the study.
地球的主磁场几何形状与以地球旋转轴约11度倾斜的条形磁体的几何形状不相似。地磁田的北极位于北地地理杆的〜1,200公里,但其南极位于距南极洲的南地理极点约1,550公里的位置,朝太平洋。这种不对称性是由地球磁场的非二极化性质引起的,这在太阳风等离子体与地球磁层的相互作用的相互作用中导致各种半球形差异。因此,太阳风的能量和动量被不对称地沉积到北极区域和南极区域的极性离子层中,从而在过去的研究中报道的极性电离层的不同电动力学参数中引起了相当大的多样性。 As new instrumentation techniques are developed, it is important to invest in development of new data assimilation and inverse methods to assure a more complete extraction of geophysical information out of new observations.The magnetosphere-ionosphere coupling is not symmetrical in terms of high-latitude ionospheric convection, field-aligned currents, electromagnetic energy (Poynting) flux, auroral particle precipitation, and upper atmosphere (热圈)反应。这项研究将量化电磁能沉积的瞬时间歇性不平衡,通过地磁场对准电流和电离层对流电场,将所有这些变量的定量整合到统一的框架中。可以同时分析多种类型的空间基和地面观测值,从而通过社区同化电离层电动动力学(AMIE)软件技术创建全球电离层电动力学的一致性间图。过去,与北极区域相比,南极区域缺乏观察结果,无法全面地分析半球间电离层电动动力学变量,除非完全依靠基于空间的观测值。南极区域中地面磁力计和高频(HF)雷达的数据最近可用性正在改变这种情况。拟议的研究是及时的,使用了一种创造性,甚至变革性的方法,该方法利用了通过NSF资助的活动磁层和极性电动动力学响应实验(AMPERE),超级双度极光雷达网络(SuperDarn)和Supermag数据库获得的新全球全球跨膜间观测值。这将有助于解决迄今为止已经确定的解释的地理航天研究的基本问题。通过广泛的观察数据同化,将在两个极地区域在全球进行几个电动力变量。这项研究将在NOAA太空天气预报中心(SWPC)上为研究和开发活动做出重大贡献,在该活动中,新一代的AMIE映射在emie层间映射可能会成为SWPC向美国政府机构提供的服务的一部分,以解决全国性地面和基于空间技术系统的空间天气负面影响的负面影响。更新的AMIE还将成为国家和国际太空科学家之间积极合作的共同平台,他们研究了将太阳能风能和动量全球转移到地球磁层,电离层和热层中的全球转移。最后,这项有趣而重要的科学研究通过直接参与研究为研究生提供了理想的教育经验和培训。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent Progress on Inverse and Data Assimilation Procedure for High-Latitude Ionospheric Electrodynamics
高纬度电离层电动力学反演和数据同化程序的最新进展
  • DOI:
    10.1007/978-3-030-26732-2_10
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matsuo, T.
  • 通讯作者:
    Matsuo, T.
Modes of (FACs) Variability and Their Hemispheric Asymmetry Revealed by Inverse and Assimilative Analysis of Iridium Magnetometer Data
铱磁强计数据的反演和同化分析揭示了(FAC)变异模式及其半球不对称性
  • DOI:
    10.1029/2019ja027265
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shi, Yining;Knipp, Delores J.;Matsuo, Tomoko;Kilcommons, Liam;Anderson, Brian
  • 通讯作者:
    Anderson, Brian
Event Studies of High‐Latitude FACs With Inverse and Assimilative Analysis of AMPERE Magnetometer Data
  • DOI:
    10.1029/2019ja027266
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yining Shi;D. Knipp;T. Matsuo;L. Kilcommons;B. Anderson
  • 通讯作者:
    Yining Shi;D. Knipp;T. Matsuo;L. Kilcommons;B. Anderson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomoko Matsuo其他文献

Modeling impact of FORMOSAT‐7/COSMIC‐2 mission on ionospheric space weather monitoring
模拟 FORMOSAT-7/COSMIC-2 任务对电离层空间天气监测的影响
Annual and semiannual variations of thermospheric density: Observations and simulations
热层密度的年度和半年度变化:观测和模拟
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiuhou Lei;Tomoko Matsuo;Xiankang Dou;Eric Sutton;Xiaoli Luan
  • 通讯作者:
    Xiaoli Luan
Detection of Methicillin-resistant Staphylococcus aureus from Patients and Hospital Personnel in a Neurosurgery Ward
神经外科病房患者及医护人员耐甲氧西林金黄色葡萄球菌的检测
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Matsuo;Keiko Oshima;Eiko Shigetomi;Michiyo Nojima;Noriyuki Murakami;K. Kono
  • 通讯作者:
    K. Kono

Tomoko Matsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomoko Matsuo', 18)}}的其他基金

CEDAR: Data-driven Modeling of the Global Equatorial Electrojet Variability
CEDAR:全球赤道电喷射变率的数据驱动建模
  • 批准号:
    2231409
  • 财政年份:
    2023
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Standard Grant
CAREER: Predictability of the Whole Atmosphere from Ground to Geospace
职业:从地面到地球空间的整个大气的可预测性
  • 批准号:
    1848544
  • 财政年份:
    2019
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Continuing Grant
EarthCube Data Capabilities: Collaborative Proposal: Assimilative Mapping of Geospace Observations
EarthCube 数据能力:协作提案:地理空间观测同化制图
  • 批准号:
    1928403
  • 财政年份:
    2019
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Modeling of Non-Gaussian Random Fields
合作研究:非高斯随机场的多尺度建模
  • 批准号:
    1811279
  • 财政年份:
    2018
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR--Assimilative Analysis of Low- and Mid-latitude Ionospheric Electrodynamics
合作研究:CEDAR--低纬度和中纬度电离层电动力学同化分析
  • 批准号:
    1651469
  • 财政年份:
    2017
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Continuing Grant
EarthCube IA: Collaborative Proposal: Integrated GeoScience Observatory
EarthCube IA:协作提案:综合地球科学观测站
  • 批准号:
    1541010
  • 财政年份:
    2015
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Standard Grant
NSWP: Next Generation AMIE: Assimilative Mapping of Space-based and Extremely Localized Observations of Ionospheric Electrodynamics
NSWP:下一代 AMIE:电离层电动力学天基和极局域观测的同化制图
  • 批准号:
    1025089
  • 财政年份:
    2010
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于磁-热场映射参数解耦辨识的永磁体健康状态监测方法研究
  • 批准号:
    52307048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向状态修的高速列车转向架焊接构架疲劳剩余寿命与载荷谱映射机制研究
  • 批准号:
    52375160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于“皮质-皮质”协同刺激长程调控皮质下卒中后受损核团重映射的机制研究
  • 批准号:
    82302871
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
综采放顶煤围岩-支架位姿-放煤性能调控映射规律研究
  • 批准号:
    52374207
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高速钢轨应力和微裂纹的磁信号映射机制及在线检测方法研究
  • 批准号:
    52305588
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Using optogenetics to identify and regulate cortical circuits that lead to interhemispheric inhibition after stroke
利用光遗传学识别和调节导致中风后大脑半球间抑制的皮质回路
  • 批准号:
    281957
  • 财政年份:
    2013
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Fellowship Programs
Ultra-fast functional magnetic resonance imaging (fMRI) mapping of layer-specific interhemispheric plasticity
层特异性半球间可塑性的超快速功能磁共振成像 (fMRI) 绘图
  • 批准号:
    DE130101175
  • 财政年份:
    2013
  • 资助金额:
    $ 33.05万
  • 项目类别:
    Discovery Early Career Researcher Award
Functional Neuroimaging of Strategic Retrieval Processes
策略检索过程的功能神经影像
  • 批准号:
    7100488
  • 财政年份:
    2006
  • 资助金额:
    $ 33.05万
  • 项目类别:
Cognitive neuroscience of temporal processing
时间处理的认知神经科学
  • 批准号:
    7142528
  • 财政年份:
    2006
  • 资助金额:
    $ 33.05万
  • 项目类别:
Compensatory Brain Activation after Stroke
中风后大脑的代偿性激活
  • 批准号:
    7288496
  • 财政年份:
    2006
  • 资助金额:
    $ 33.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了