Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance

合作研究:保险和金融极端风险的建模和分析

基本信息

  • 批准号:
    1436700
  • 负责人:
  • 金额:
    $ 13.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Recent rare events with disastrous economic and social consequences, so-called Black-Swan events, have made today's world far different from just decades ago. Examples of these events range from earthquakes and nuclear crises to the collapse of financial market from sub-prime mortgages. All of these intensify the need for risk management among the insurance and financial industry, and in particular, the invention of new tools to model, analyze, predict, and manage extreme risks. The investigators will undertake the fundamental challenges posed by the study of rare events: they, by nature, are short of data, their likelihood is difficult to compute, and that they are difficult to reflect via accurate models. As such, the investigators will take an integrated approach that combines statistical methods, probabilistic analysis, optimization, and efficient computer simulation to assess their risks. The research has potential for high societal impact, given the wide range of applications of the models and methods documented in the project for handling the important implications of extreme events. The investigators plan to train several Ph.D. students and will also involve them in K12 education as guest lecturers via Harlem Schools Partnership with Columbia University. The investigators will attempt to recruit high-quality personnel from under-represented groups. They will also disseminate the scientific output of this project via open access sites.The intellectual strength of the project rests on the fact that it includes algorithmic, computational, statistical, and theoretical components. The goal is to establish a robust and systematic approach for modeling and analyzing extreme risks in insurance and finance. The investigators systematically combine: a) the theory of extreme value statistics, b) asymptotic analysis in probability, c) stochastic optimization, and d) highly efficient Monte Carlo techniques. Specific objectives include: 1) establishing a robust asymptotic theory to account for tail events uniformly over a wide range of settings, 2) taking advantage of the asymptotic large deviations theory to build provably efficient Monte Carlo estimators for rare events, and 3) investigation of a robust optimization approach that accounts for model misspecification. The investigators' approach is both innovative and necessary because the nature of rare events exposes deficiencies in each of these areas: i) The theory of extreme value statistics assumes a large number of data points to provide accurate estimators but the nature of rare events precludes this assumption. ii) Asymptotic analysis techniques allow to obtain formulas that are easily evaluated and thus amenable to sensitivity analysis under a wide range of model parameters. So, asymptotics may help mitigate some of the statistical error issue, but unfortunately, they carry an unmeasurable error and often lose important information. iii) Efficient Monte Carlo has a controlled error by sampling, but it still assumes a model in place and could lead to incorrect conclusions in case the model is incorrect. iv) Optimization techniques might help mitigate the problem of model uncertainty by computing bounds for the probabilities of interest, optimizing over the selection of models that cover the truth with high confidence. However, these might be too loose to be practical or the optimization problem could be too complex, thus the need from 1) to 3). Overall, the investigators will establish a comprehensive approach that resolves the deficiencies exposed by each of the aforementioned segregated methods.
最近遇到灾难性的经济和社会后果的罕见事件,即所谓的黑人事件,使当今的世界与几十年前的不同之处有很大不同。这些事件的例子从地震和核危机到金融市场的崩溃。所有这些都加剧了保险和金融行业之间对风险管理的需求,尤其是发明了新工具来建模,分析,预测和管理极端风险。研究人员将面临罕见事件的研究带来的基本挑战:他们本质上是缺乏数据,他们的可能性很难计算,并且很难通过准确的模型来反映。因此,研究人员将采用一种结合统计方法,概率分析,优化和有效计算机模拟的综合方法,以评估其风险。鉴于项目中记录在处理极端事件的重要含义的模型和方法的广泛应用,这项研究具有高社会影响的潜力。调查人员计划培训几位博士学位学生,还将通过哈林学校与哥伦比亚大学合作作为客座讲师参加K12教育。调查人员将尝试从代表性不足的群体中招募高质量的人员。他们还将通过开放访问站点传播该项目的科学输出。项目的智力强度取决于它包括算法,计算,统计和理论组件。目的是建立一种强大而系统的方法来建模和分析保险和金融中的极端风险。研究人员系统地结合了:a)极值统计的理论,b)概率中的渐近分析,c)随机优化和d)高效的蒙特卡洛技术。具体目标包括:1)建立强大的渐近理论,以在广泛的环境中统一地解释尾巴事件,2)利用渐近的大偏差理论,以构建可证明有效的蒙特卡洛估计器,以实现罕见事件,3)研究可构成模型错误的强大优化方法。研究人员的方法既具有创新性,又是必要的,因为罕见事件的性质暴露了每个领域的缺陷:i)极值统计的理论假设大量数据点可以提供准确的估计器,但罕见事件的性质阻止了这一假设。 ii)渐近分析技术允许获得易于评估的公式,因此可以在广泛的模型参数下进行灵敏度分析。因此,渐近学可能有助于减轻某些统计错误问题,但不幸的是,它们带有无法衡量的错误并经常失去重要信息。 iii)有效的蒙特卡洛(Monte Carlo)通过采样具有控制误差,但它仍然假定模型已经到位,并且如果模型不正确,则可能导致不正确的结论。 iv)优化技术可以通过计算感兴趣的概率来计算界限,以高度置信度覆盖真相的模型,从而有助于减轻模型不确定性问题。但是,这些可能太松了,无法实用,或者优化问题可能太复杂了,因此需要从1)到3)。 总体而言,研究人员将建立一种全面的方法,以解决上述每种隔离方法暴露的缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
Representation Learning for Extremes
极端情况下的表征学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
  • 批准号:
    1820942
  • 财政年份:
    2018
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1720451
  • 财政年份:
    2017
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538217
  • 财政年份:
    2015
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
  • 批准号:
    1320550
  • 财政年份:
    2013
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
  • 批准号:
    0846816
  • 财政年份:
    2009
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant

相似国自然基金

热液改造型页岩成储机理研究——以松辽盆地青一段为例
  • 批准号:
    42372150
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
    52274075
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 13.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了