CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
基本信息
- 批准号:0846816
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) project is to investigate and develop a framework that exploits asymptotic analysis, expressed at a coarse scale, to systematically generate efficient rare-event simulation algorithms for complex stochastic systems, which must necessarily be implemented at a fine scale. The objective is to study five types of environments that exhibit stylized features that have not been well studied in rare-event simulation, namely, a) Stochastic recursions with heavy-tails (which are used to model insurance risk and reservoir processes), b) Heavy-tailed queues (which arise in database and networking applications), c) Counting problems and inference for combinatorial structures (arising in sociology and biology), d) Location of objects immersed in a random medium (with particular emphasis on military applications where one needs to find targets that have eluded detection for long time), and e) Random fields (which arise in settings such as oceanography, environmental studies and medical imaging). The strategy consists in connecting large deviations analysis with algorithmic design of efficient simulation estimators. A key tool that we exploit in the design and performance analysis of our algorithms is a systematic use of Lyapunov bounds for Markov chains, combined with parametric families of importance sampling distributions. Events such as environmental or natural disasters, major market crashes, pension and insurance breakdowns and terrorist attacks are rare but consequential. If successful, the proposed research program will provide efficient computational tools for risk assessment of such events which exhibit features such as heavy-tails, complex dependence and incorporation of combinatorial objects. Efficient evaluation of rare-event probabilities can provide decision makers with key quantitative policy assessment metrics and accompanying insights. Examples include computing the probability that a target is able to evade a set of detectors as well as its conditional most likely location, and assessing ruin probabilities for purposes of sizing the capital reserve of insurance and financial companies.
该教师早期职业发展(职业)项目的研究目标是调查和开发一个框架,该框架利用了以粗略表达的渐近分析,以系统地生成有效的复杂随机系统的有效的稀有事实模拟算法,必须以精细的规模实施。 The objective is to study five types of environments that exhibit stylized features that have not been well studied in rare-event simulation, namely, a) Stochastic recursions with heavy-tails (which are used to model insurance risk and reservoir processes), b) Heavy-tailed queues (which arise in database and networking applications), c) Counting problems and inference for combinatorial structures (arising in sociology and biology), d)浸入随机培养基中的物体的位置(特别强调了需要长期发现检测的目标的军事应用),以及e)随机磁场(在海洋学,环境研究和医学成像等环境中产生)。该策略包括将大偏差分析与有效仿真估计器的算法设计联系起来。我们在算法的设计和性能分析中利用的关键工具是对马尔可夫链的Lyapunov界限的系统使用,并结合了重要性采样分布的参数家族。 诸如环境或自然灾害,重大市场崩溃,养老金和保险崩溃以及恐怖袭击之类的事件很少见,但结果是结果。如果成功的话,拟议的研究计划将提供有效的计算工具,以评估此类事件的风险评估,这些事件具有重型尾巴,复杂的依赖性和组合对象的合并。对稀有事实概率的有效评估可以为决策者提供关键的定量政策评估指标和随附的见解。示例包括计算目标能够逃避一组探测器及其有条件的位置的概率,以及评估毁灭概率,以缩小保险和金融公司的资本储备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Blanchet其他文献
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shengbo Wang;Jose Blanchet;Peter Glynn - 通讯作者:
Peter Glynn
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
- DOI:
10.21203/rs.3.rs-31953/v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker - 通讯作者:
D. Scheinker
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
- DOI:
10.48550/arxiv.2404.01431 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guanyang Wang;Jose Blanchet;P. Glynn - 通讯作者:
P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
- DOI:
10.1016/j.jmps.2024.105636 - 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
Zhenyuan Zhang;Shaswat Mohanty;Jose Blanchet;Wei Cai - 通讯作者:
Wei Cai
Efficient Steady-State Simulation of High-Dimensional Stochastic Networks
高维随机网络的高效稳态模拟
- DOI:
10.1287/stsy.2021.0077 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Jose Blanchet;Xinyun Chen;Nian Si;Peter W. Glynn - 通讯作者:
Peter W. Glynn
Jose Blanchet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Blanchet', 18)}}的其他基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312204 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
- 批准号:
2118199 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
- 批准号:
1915967 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
- 批准号:
1820942 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1838576 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1720451 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
- 批准号:
1538217 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
- 批准号:
1436700 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
- 批准号:
1320550 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
基于深度学习的蒙特卡罗中子输运全局解问题高效算法研究
- 批准号:12305173
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
辐射输运方程的高效渐近保持蒙特卡罗算法
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
随机最优控制问题的高效蒙特卡洛有限元法
- 批准号:11961008
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
间接优化的高效Monte Carlo声传播研究
- 批准号:61772458
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于高效蒙特卡罗策略的最优化方法及应用研究
- 批准号:11501320
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Efficient Monte Carlo Methods for Nonequilibrium Statistical Physics
非平衡统计物理的高效蒙特卡罗方法
- 批准号:
2012207 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Efficient Monte Carlo Algorithms for Bayesian Inference
用于贝叶斯推理的高效蒙特卡罗算法
- 批准号:
1811920 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual