Collaborative Research: Perfect Simulation of Stochastic Networks

合作研究:随机网络的完美模拟

基本信息

  • 批准号:
    1538217
  • 负责人:
  • 金额:
    $ 12.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Stochastic networks are a general class of time-varying probabilistic models where there is competition for limited resources. They are used in a wide range of engineering applications such as communication networks, call centers, and manufacturing systems. Operators of these types of systems are often interested in achieving a high level of performance over the long run, i.e., in steady state. Thus, it is important to devise efficient computational methods for steady-state analysis of stochastic networks. Simulation is one of the most commonly used methods for estimating steady-state performance but straightforward application results in an initial-transient bias. This award provides a comprehensive set of tools that will enable exact (i.e. with no initial-transient bias) steady-state stochastic simulation of a wide range of complex stochastic networks of interest. This characteristic (complete bias deletion) is what defines a perfect simulation algorithm. This research will therefore enable accurate steady-state analysis in a wide range of areas of societal impact, thereby allowing operators to improve efficiency and performance. Because steady-state analysis arises in a wide variety of areas, including Bayesian Statistics, the award will also be impactful beyond the types of applications mentioned earlier. Steady-state performance analysis of stochastic networks (including general queueing networks) is of great importance in operations research. Stochastic simulation has been a traditional tool used by modelers and researchers to perform steady-state computations. The key challenge in steady-state simulation is the quantification of the bias caused by the initial transient behavior associated to any direct stochastic simulation procedure. This award's focus is on algorithms that fully eliminate the initial transient bias in a non-asymptotic sense; these are known as perfect simulation algorithms. This research will produce the first class of perfect simulation algorithms for general stochastic networks with features such as non-Markovian input, time-inhomogeneous (periodic) characteristics, long-range dependence traffic (e.g. fractional Brownian motion), and multidimensional networks with and without capacity constraints (such as generalized Jackson networks). This research combines techniques from areas such as rare-event simulation and steady-state simulation, which have not been connected for the purpose of developing computational methods. The project has important implications for other scientific areas of great relevance, such as Bayesian Statistics, due to the connection between steady-state simulation through Markov chain Monte Carlo method.
随机网络是一类通用的时变概率模型,其中存在对有限资源的竞争。 它们广泛用于通信网络、呼叫中心和制造系统等工程应用。此类系统的操作员通常对长期(即稳定状态)实现高水平的性能感兴趣。因此,设计有效的计算方法来进行随机网络的稳态分析非常重要。 仿真是估计稳态性能最常用的方法之一,但简单的应用会导致初始瞬态偏差。该奖项提供了一套全面的工具,可以对各种感兴趣的复杂随机网络进行精确(即没有初始瞬态偏差)稳态随机模拟。这个特性(完全消除偏差)定义了完美的模拟算法。因此,这项研究将能够在具有社会影响的广泛领域进行准确的稳态分析,从而使运营商能够提高效率和绩效。由于稳态分析出现在包括贝叶斯统计在内的各个领域,因此该奖项的影响力也将超出前面提到的应用类型。随机网络(包括一般排队网络)的稳态性能分析在运筹学中非常重要。随机模拟一直是建模者和研究人员用来执行稳态计算的传统工具。稳态仿真的关键挑战是量化由与任何直接随机仿真过程相关的初始瞬态行为引起的偏差。该奖项的重点是在非渐近意义上完全消除初始瞬态偏差的算法;这些被称为完美的模拟算法。这项研究将为一般随机网络产生第一类完美的模拟算法,其特征包括非马尔可夫输入、时间非均匀(周期性)特征、长程相关流量(例如分数布朗运动)以及有或没有的多维网络容量限制(例如广义杰克逊网络)。 这项研究结合了罕见事件模拟和稳态模拟等领域的技术,这些技术尚未出于开发计算方法的目的而连接起来。由于通过马尔可夫链蒙特卡罗方法进行稳态模拟之间的联系,该项目对贝叶斯统计等其他具有重要意义的科学领域具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

Efficient Steady-State Simulation of High-Dimensional Stochastic Networks
高维随机网络的高效稳态模拟
  • DOI:
    10.1287/stsy.2021.0077
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jose Blanchet;Xinyun Chen;Nian Si;Peter W. Glynn
  • 通讯作者:
    Peter W. Glynn
Representation Learning for Extremes
极端情况下的表征学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
  • 批准号:
    1820942
  • 财政年份:
    2018
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1720451
  • 财政年份:
    2017
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436700
  • 财政年份:
    2014
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
  • 批准号:
    1320550
  • 财政年份:
    2013
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
  • 批准号:
    0846816
  • 财政年份:
    2009
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
  • 批准号:
    1921818
  • 财政年份:
    2019
  • 资助金额:
    $ 12.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了