Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
基本信息
- 批准号:1538217
- 负责人:
- 金额:$ 12.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic networks are a general class of time-varying probabilistic models where there is competition for limited resources. They are used in a wide range of engineering applications such as communication networks, call centers, and manufacturing systems. Operators of these types of systems are often interested in achieving a high level of performance over the long run, i.e., in steady state. Thus, it is important to devise efficient computational methods for steady-state analysis of stochastic networks. Simulation is one of the most commonly used methods for estimating steady-state performance but straightforward application results in an initial-transient bias. This award provides a comprehensive set of tools that will enable exact (i.e. with no initial-transient bias) steady-state stochastic simulation of a wide range of complex stochastic networks of interest. This characteristic (complete bias deletion) is what defines a perfect simulation algorithm. This research will therefore enable accurate steady-state analysis in a wide range of areas of societal impact, thereby allowing operators to improve efficiency and performance. Because steady-state analysis arises in a wide variety of areas, including Bayesian Statistics, the award will also be impactful beyond the types of applications mentioned earlier. Steady-state performance analysis of stochastic networks (including general queueing networks) is of great importance in operations research. Stochastic simulation has been a traditional tool used by modelers and researchers to perform steady-state computations. The key challenge in steady-state simulation is the quantification of the bias caused by the initial transient behavior associated to any direct stochastic simulation procedure. This award's focus is on algorithms that fully eliminate the initial transient bias in a non-asymptotic sense; these are known as perfect simulation algorithms. This research will produce the first class of perfect simulation algorithms for general stochastic networks with features such as non-Markovian input, time-inhomogeneous (periodic) characteristics, long-range dependence traffic (e.g. fractional Brownian motion), and multidimensional networks with and without capacity constraints (such as generalized Jackson networks). This research combines techniques from areas such as rare-event simulation and steady-state simulation, which have not been connected for the purpose of developing computational methods. The project has important implications for other scientific areas of great relevance, such as Bayesian Statistics, due to the connection between steady-state simulation through Markov chain Monte Carlo method.
随机网络是一般类别的概率模型,在这种概率模型中,有有限的资源竞争。 它们用于广泛的工程应用程序,例如通信网络,呼叫中心和制造系统。这些类型的系统的运营商通常有兴趣从长远来看,即处于稳定状态。因此,重要的是要设计有效的计算方法来进行随机网络的稳态分析。 仿真是估计稳态性能的最常用方法之一,但直接应用会导致初始传播偏置。该奖项提供了一组全面的工具,可以使广泛的复杂随机网络的稳态随机模拟确切(即没有初始偏见)的稳态随机模拟。这种特征(完整的偏置删除)定义了完美的模拟算法。因此,这项研究将在社会影响的广泛领域中实现准确的稳态分析,从而使操作员能够提高效率和绩效。由于稳态分析在包括贝叶斯统计在内的各种领域都产生,因此该奖项也将超出前面提到的应用类型的影响。在运营研究中,随机网络(包括一般排队网络)的稳态绩效分析非常重要。随机仿真是建模者和研究人员使用稳态计算的传统工具。稳态模拟的关键挑战是量化与任何直接随机模拟过程相关的初始瞬态行为引起的偏差。该奖项的重点是完全消除了非反应意义上最初的短暂偏见的算法。这些被称为完美的仿真算法。这项研究将为一类完美的模拟算法提供通用随机网络的完美仿真算法,该网络具有非马克维亚输入,时间为偶联(周期性)特征,远距离依赖流量(例如,布朗尼分数运动)以及具有和无能力约束的多维网络(例如,杰克逊网络)。 这项研究结合了诸如稀有事实模拟和稳态模拟等领域的技术,这些技术尚未连接为开发计算方法。由于通过马尔可夫链蒙特卡洛法之间的稳态模拟之间的联系,该项目对其他非常相关的科学领域(例如贝叶斯统计)具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Blanchet其他文献
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
- DOI:
10.21203/rs.3.rs-31953/v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker - 通讯作者:
D. Scheinker
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shengbo Wang;Jose Blanchet;Peter Glynn - 通讯作者:
Peter Glynn
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
- DOI:
10.48550/arxiv.2404.01431 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guanyang Wang;Jose Blanchet;P. Glynn - 通讯作者:
P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
- DOI:
10.1016/j.jmps.2024.105636 - 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
Zhenyuan Zhang;Shaswat Mohanty;Jose Blanchet;Wei Cai - 通讯作者:
Wei Cai
Representation Learning for Extremes
极端情况下的表征学习
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh - 通讯作者:
Vahid Tarokh
Jose Blanchet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Blanchet', 18)}}的其他基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312204 - 财政年份:2023
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
- 批准号:
2118199 - 财政年份:2021
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
- 批准号:
1915967 - 财政年份:2019
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
- 批准号:
1820942 - 财政年份:2018
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1838576 - 财政年份:2018
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1720451 - 财政年份:2017
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
- 批准号:
1436700 - 财政年份:2014
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
- 批准号:
1320550 - 财政年份:2013
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
- 批准号:
0846816 - 财政年份:2009
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
相似国自然基金
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
- 批准号:52371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
- 批准号:82370525
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
- 批准号:62371132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
- 批准号:
1921818 - 财政年份:2019
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant