Development of superconvergent hybridizable discontinuous Galerkin methods and mixed methods for Korteweg-de Vries type equations
超收敛杂化间断伽辽金方法和 Korteweg-de Vries 型方程混合方法的发展
基本信息
- 批准号:1419029
- 负责人:
- 金额:$ 12.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on developing novel numerical methods for simulating the Korteweg-de Vries (KdV) type equations, that model phenomena in areas such as fluid mechanics, nonlinear optics, acoustics, and plasma physics. For example, the KdV equation has been used in the modeling of shallow water waves and the study of Tsunami waves. The new numerical tools developed under this project will provide scientists with a better understanding of theoretically unresolved issues on the mathematical properties of solutions to KdV type equations. Furthermore, the proposed project will provide accurate and efficient numerical algorithms for the simulation of nonlinear dispersive wave propagation in various applications. These proposed research topics will have a positive impact across the mathematical sciences and have significant applications in many scientific areas that rely on the study of non-linear phenomena. This project will involve undergraduate and graduate students and focus on involving student from groups traditionally underrepresented in the sciences. By working on the project, the students will benefit from novel ideas for new algorithm design, approaches for rigorous mathematical analysis, and advanced skills in implementation.The objective of the project is to devise and analyze the first superconvergent hybridizable discontinuous Galerkin (HDG) methods and hybridized mixed methods for solving the KdV equations and their multidimensional generalizations. The proposed project includes a comprehensive coverage of new algorithm design that is backed up by solid analysis and made practical by efficient implementation. The P.I. proposes to carry out a detailed study of superconvergent HDG methods and hybridized mixed methods for KdV type problems in the following steps: First, the P.I. will develop novel HDG methods and hybridized mixed methods for stationary third-order linear equations, focusing on the discretization of the third-order differential operator. Superconvergence properties of the approximations will be computationally and analytically investigated. Second, the P.I. would like to solve the third-order KdV equations by using implicit schemes for time discretization to avoid extremely small time steps and developing new HDG methods and hybridized mixed methods for spatial discretization. Error analysis will be carried out, and superconvergence and conservativity properties will be studied. Third, the P.I. plans to extend these superconvergent methods to multidimensional KdV type equations such as the Kadomtsev-Petviashvili equation, and the hybridization technique will make the methods efficiently implementable in multiple dimensions.
该项目的重点是开发用于模拟 Korteweg-de Vries (KdV) 类型方程的新颖数值方法,该方程对流体力学、非线性光学、声学和等离子体物理等领域的现象进行建模。例如,KdV方程已用于浅水波的建模和海啸波的研究。该项目开发的新数值工具将使科学家更好地理解有关 KdV 型方程解的数学性质的理论上尚未解决的问题。此外,该项目将为各种应用中非线性色散波传播的模拟提供准确有效的数值算法。这些提出的研究主题将对整个数学科学产生积极影响,并在许多依赖非线性现象研究的科学领域具有重要应用。该项目将涉及本科生和研究生,并重点关注传统上在科学领域代表性不足的群体的学生。通过参与该项目,学生将受益于新算法设计的新颖想法、严格的数学分析方法以及高级实施技能。该项目的目标是设计和分析第一个超收敛混合不连续伽辽金(HDG)方法以及用于求解 KdV 方程及其多维推广的混合混合方法。 拟议的项目全面涵盖了新算法设计,该设计有可靠的分析支持,并通过有效的实施而变得实用。 P.I.提出对KdV类问题的超收敛HDG方法和杂化混合方法进行详细研究,步骤如下:首先,P.I.将针对平稳三阶线性方程开发新颖的 HDG 方法和混合混合方法,重点关注三阶微分算子的离散化。近似值的超收敛性质将通过计算和分析进行研究。其次,P.I.希望通过使用隐式时间离散方案来求解三阶 KdV 方程以避免极小的时间步长,并开发新的 HDG 方法和混合混合方法进行空间离散。将进行误差分析,并研究超收敛性和保守性。第三,P.I.计划将这些超收敛方法扩展到多维 KdV 型方程,例如 Kadomtsev-Petviashvili 方程,而混合技术将使这些方法在多个维度上有效实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Dong其他文献
Structural changes in the gut microbiome of short-term and long-term medical workers compared to normal controls
与正常对照相比,短期和长期医务人员肠道微生物组的结构变化
- DOI:
10.1101/772590 - 发表时间:
2019-09-18 - 期刊:
- 影响因子:0
- 作者:
N. Zheng;Shenghui Li;Bo Dong;Wen Sun;Huairui Li;Yongli Zhang;Peng Li;Zhiwei Fang;Changming Chen;Xiuyan Han;Bo Li;Siyi Zhang;Miao Xu;Guixin Zhang;Y. Xin;Yufang Ma;X. Wan;Qiulong Yan - 通讯作者:
Qiulong Yan
Compressing Context to Enhance Inference Efficiency of Large Language Models
压缩上下文以提高大型语言模型的推理效率
- DOI:
10.48550/arxiv.2310.06201 - 发表时间:
2023-10-09 - 期刊:
- 影响因子:0
- 作者:
Yucheng Li;Bo Dong;Chenghua Lin;Frank Guerin - 通讯作者:
Frank Guerin
Dual Transverse Electro-Optic Effect Enables Heterodyne Differential Interference Contrast Imaging
双横向电光效应实现外差微分干涉对比成像
- DOI:
10.1109/lpt.2023.3334720 - 发表时间:
2024-01-15 - 期刊:
- 影响因子:2.6
- 作者:
Shuai Gao;Pengfei Huang;Jianxuan Xiong;Bo Dong;Jiabin Wang;Zhan Gao;Shengjia Wang - 通讯作者:
Shengjia Wang
A passive scalar sub-grid scale model and its application to airflow simulation around a building
被动标量子网格比例模型及其在建筑物周围气流模拟中的应用
- DOI:
10.1007/s12273-013-0130-y - 发表时间:
2014-04-01 - 期刊:
- 影响因子:5.5
- 作者:
Huiyuan Shen;Qibin He;Yanhua Liu;Yufei Zhang;Bo Dong - 通讯作者:
Bo Dong
Direct Reuse of Aluminium and Copper Current Collectors from Spent Lithium-ion Batteries
废锂离子电池中铝和铜集流体的直接再利用
- DOI:
10.1039/d2gc03940k - 发表时间:
2022-10-14 - 期刊:
- 影响因子:9.8
- 作者:
Pengchen Zhu;E. Driscoll;Bo Dong;R. Sommerville;A. Zorin;P. Slater;E. Kendrick - 通讯作者:
E. Kendrick
Bo Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Dong', 18)}}的其他基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Multiscale and Hybridizable Discontinuous Galerkin Methods for Dispersive Equations and Systems
色散方程和系统的多尺度和可混合非连续伽辽金方法
- 批准号:
1818998 - 财政年份:2018
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
SBIR Phase I: Fiber Optic Distributed Acoustic Sensor
SBIR 第一阶段:光纤分布式声学传感器
- 批准号:
1247818 - 财政年份:2013
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
相似国自然基金
椭圆及Stokes界面问题非协调Rannacher-Turek有限元方法基于梯度重构的超收敛分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分数阶Schrödinger方程的间断有限元方法以及超收敛分析
- 批准号:12126325
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
分数阶Schrödinger方程的间断有限元方法以及超收敛分析
- 批准号:12126315
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
非定常非线性耦合问题的各向异性有限元方法超收敛研究
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
适用于多片复杂结构分析的高阶三维等几何配点方法研究
- 批准号:11902263
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Superconvergent HDG methods for the biharmonic equation
双调和方程的超收敛 HDG 方法
- 批准号:
20K22300 - 财政年份:2020
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Superconvergent Approximations by Galerkin Methods for Partial Differential Equations
偏微分方程的伽辽金法超收敛逼近
- 批准号:
1912646 - 财政年份:2019
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
- 批准号:
1522657 - 财政年份:2015
- 资助金额:
$ 12.99万 - 项目类别:
Continuing Grant
Superconvergent post-processing of some newly developed numerical methods with weak derivatives
一些新发展的弱导数数值方法的超收敛后处理
- 批准号:
1419040 - 财政年份:2014
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
- 批准号:
1115331 - 财政年份:2011
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant