Multiscale and Hybridizable Discontinuous Galerkin Methods for Dispersive Equations and Systems
色散方程和系统的多尺度和可混合非连续伽辽金方法
基本信息
- 批准号:1818998
- 负责人:
- 金额:$ 26.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concentrates on the development of novel computational methods for efficiently solving dispersive equations and systems, including the time-independent Schrodinger equations and Korteweg-de Vries (KdV) type equations in multidimensional spaces and systems. Schrodinger equations play a central role in the study of quantum mechanical systems and are widely used in the simulation of quantum transport in nanoscale semiconductor devices. The proposed multiscale method for Schrodinger equations will have a positive impact in the study of quantum mechanics and great potential in applications to ultrafast, low consumption and high functionality nanoscale semiconductor devices. KdV type equations and systems have wide applications in various fields such as fluid mechanics, nonlinear optics, acoustics, plasma physics, and Bose-Einstein condensates. The proposed method for KdV type equations and systems will help understand theoretically unresolved issues and provide accurate and efficient numerical tools for simulation of nonlinear waves in applications. The proposed research includes the following topics, (1) development and analysis of multiscale discontinuous Galerkin (DG) methods for Schrodinger equations in 1D, system, and 2D for the simulation of nanoscale semiconductor structures on coarse meshes, (2) design and error analysis of hybridizable discontinuous Galerkin (HDG) methods for solving multidimensional KdV type equations and KdV type systems, and (3) design of IMEX HDG-DG schemes for efficiently solving KdV type nonlinear equations and systems. To efficiently resolve highly oscillatory solutions of Schrodinger equations on coarse meshes, the multiscale DG methods will incorporate the oscillatory nature of the solutions and thus the multiple scales into the non-polynomial basis functions. For KdV type equations in multi-dimensions and systems, the PI will devise new HDG methods, study their convergence and conservation properties, and combine them with other DG methods in IMEX scheme to achieve high-order solutions both in time and in space and avoid overly small time-step sizes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于开发有效求解色散方程和系统的新型计算方法,包括多维空间和系统中的时间无关薛定谔方程和 Korteweg-de Vries (KdV) 型方程。 薛定谔方程在量子力学系统的研究中发挥着核心作用,并广泛应用于纳米级半导体器件中量子输运的模拟。所提出的薛定谔方程的多尺度方法将对量子力学的研究产生积极的影响,并在超快、低功耗和高功能纳米半导体器件的应用中具有巨大的潜力。 KdV型方程和系统在流体力学、非线性光学、声学、等离子体物理、玻色-爱因斯坦凝聚体等各个领域有着广泛的应用。所提出的 KdV 型方程和系统方法将有助于理解理论上未解决的问题,并为应用中的非线性波模拟提供准确有效的数值工具。 拟议的研究包括以下主题,(1)开发和分析一维、系统和二维薛定谔方程的多尺度不连续伽辽金(DG)方法,用于在粗网格上模拟纳米级半导体结构,(2)设计和误差分析用于求解多维 KdV 型方程和 KdV 型系统的可混合间断伽辽金 (HDG) 方法,以及 (3) 用于高效求解的 IMEX HDG-DG 方案的设计KdV型非线性方程和系统。为了有效地求解粗网格上薛定谔方程的高振荡解,多尺度 DG 方法将结合解的振荡性质,从而将多个尺度纳入非多项式基函数中。对于多维、多系统的KdV型方程,PI将设计新的HDG方法,研究其收敛性和守恒性质,并将其与IMEX方案中的其他DG方法相结合,以实现时间和空间上的高阶解,并避免时间步长过小。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
一维平稳薛定谔方程多尺度间断伽辽金法共振误差的数值研究
- DOI:10.1007/s42967-022-00248-4
- 发表时间:2023-03
- 期刊:
- 影响因子:1.6
- 作者:Dong, Bo;Wang, Wei
- 通讯作者:Wang, Wei
A high-order multiscale discontinuous Galerkin method for two-dimensional Schrödinger equation in quantum transport
量子输运中二维薛定谔方程的高阶多尺度间断伽辽金法
- DOI:10.1016/j.cam.2022.114701
- 发表时间:2023-01
- 期刊:
- 影响因子:2.4
- 作者:Dong, Bo;Wang, Wei
- 通讯作者:Wang, Wei
High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrödinger equation
一维平稳薛定谔方程的高阶多尺度间断伽辽金方法
- DOI:10.1016/j.cam.2020.112962
- 发表时间:2020-12
- 期刊:
- 影响因子:2.4
- 作者:Dong, Bo;Wang, Wei
- 通讯作者:Wang, Wei
A New Conservative Discontinuous Galerkin Method via Implicit Penalization for the Generalized Korteweg–de Vries Equation
广义Kortewegâde Vries方程的隐式惩罚的新保守间断伽辽金方法
- DOI:10.1137/22m1470827
- 发表时间:2022-12
- 期刊:
- 影响因子:2.9
- 作者:Chen, Yanlai;Dong, Bo;Pereira, Rebecca
- 通讯作者:Pereira, Rebecca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Dong其他文献
Compressing Context to Enhance Inference Efficiency of Large Language Models
压缩上下文以提高大型语言模型的推理效率
- DOI:
10.48550/arxiv.2310.06201 - 发表时间:
2023-10-09 - 期刊:
- 影响因子:0
- 作者:
Yucheng Li;Bo Dong;Chenghua Lin;Frank Guerin - 通讯作者:
Frank Guerin
Dual Transverse Electro-Optic Effect Enables Heterodyne Differential Interference Contrast Imaging
双横向电光效应实现外差微分干涉对比成像
- DOI:
10.1109/lpt.2023.3334720 - 发表时间:
2024-01-15 - 期刊:
- 影响因子:2.6
- 作者:
Shuai Gao;Pengfei Huang;Jianxuan Xiong;Bo Dong;Jiabin Wang;Zhan Gao;Shengjia Wang - 通讯作者:
Shengjia Wang
Association of SELP genetic polymorphisms and additional gene-smoking interaction on cardiovascular disease in Chinese Han population
SELP基因多态性与其他基因-吸烟相互作用与中国汉族人群心血管疾病的关联
- DOI:
10.1002/slct.202204773 - 发表时间:
2016 - 期刊:
- 影响因子:1.8
- 作者:
L. Kou;N. Yang;Jingyu Yang;Bo Dong;Qin Qin - 通讯作者:
Qin Qin
Structural changes in the gut microbiome of short-term and long-term medical workers compared to normal controls
与正常对照相比,短期和长期医务人员肠道微生物组的结构变化
- DOI:
10.1101/772590 - 发表时间:
2019-09-18 - 期刊:
- 影响因子:0
- 作者:
N. Zheng;Shenghui Li;Bo Dong;Wen Sun;Huairui Li;Yongli Zhang;Peng Li;Zhiwei Fang;Changming Chen;Xiuyan Han;Bo Li;Siyi Zhang;Miao Xu;Guixin Zhang;Y. Xin;Yufang Ma;X. Wan;Qiulong Yan - 通讯作者:
Qiulong Yan
A passive scalar sub-grid scale model and its application to airflow simulation around a building
被动标量子网格比例模型及其在建筑物周围气流模拟中的应用
- DOI:
10.1007/s12273-013-0130-y - 发表时间:
2014-04-01 - 期刊:
- 影响因子:5.5
- 作者:
Huiyuan Shen;Qibin He;Yanhua Liu;Yufei Zhang;Bo Dong - 通讯作者:
Bo Dong
Bo Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Dong', 18)}}的其他基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Development of superconvergent hybridizable discontinuous Galerkin methods and mixed methods for Korteweg-de Vries type equations
超收敛杂化间断伽辽金方法和 Korteweg-de Vries 型方程混合方法的发展
- 批准号:
1419029 - 财政年份:2014
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
SBIR Phase I: Fiber Optic Distributed Acoustic Sensor
SBIR 第一阶段:光纤分布式声学传感器
- 批准号:
1247818 - 财政年份:2013
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
相似国自然基金
复杂交互场景下智能车辆类脑风险认知与可持续学习方法研究
- 批准号:52372405
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多稳态可转变正-负-零泊松比梯度杂交结构的抗爆响应机制与耗能机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
鲫鲤杂交品系异源染色体的减数分裂特征研究
- 批准号:31873038
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
萘酐-咔唑“杂交”的多位点可修饰双光子荧光染料的设计、合成及应用研究
- 批准号:21801145
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
鲤鲂杂交形成新型二倍体和四倍体鱼的遗传特性研究
- 批准号:31730098
- 批准年份:2017
- 资助金额:330.0 万元
- 项目类别:重点项目
相似海外基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 26.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 26.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral