Phaseless Reconstruction and Geometric Analysis of Frames
框架的无相重建和几何分析
基本信息
- 批准号:1413249
- 负责人:
- 金额:$ 35.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies two problems, each exploiting redundancy of representations in mathematics and engineering, and develops new methods to recover a signal from a nonlinear processing scheme. The first problem is related to signal reconstruction from magnitudes of a redundant linear representation (the so-called phase retrieval problem). The second problem involves a geometric analysis of frames and connections to deep problems in mathematics (such as the Kadison-Singer problem). This analysis leads to faster methods that offer better quality and resolution of the reconstructed signals in applications from X-ray crystallography, data communication on fiber optics, and speech processing. Undergraduate and graduate students involved in this project are trained for a globally competitive STEM workforce by learning to develop new mathematical tools to solve real-world problems. The investigator studies two problems, each exploiting redundancy of representations in mathematics and engineering. The first leads to new methods to recover a signal from a nonlinear processing scheme. Recently two far-reaching discoveries have been made that connect the nonlinear information (magnitudes of frame coefficients) to certain scalar products in larger embedding spaces. This way the original problem of recovering a signal, which is fundamentally nonlinear, is recast into a linear reconstruction problem coupled with a rank-one approximation problem. When the linear redundant representation is associated with a group representation (such as Weyl-Heisenberg, or windowed Fourier transform), then the relevant tensor operators inherit this invariance property. Thus a fast (nonlinear) reconstruction algorithm is possible. This approach suggests a new signal representation model, where signals are not represented simply by vectors in a Hilbert space, but rather by operators in a larger dimensional Hilbert-Schmidt-like space, similar to the quantum state theory. The methods developed here borrow from a wide range of mathematical areas such as harmonic analysis, operator theory, and algebraic geometry. In turn this approach allows for stable and efficient solutions relevant to areas of electrical engineering as diverse as array signal processing, speech processing, quantum computing, and X-ray crystallography. The second problem expands the solution of the Kadison-Singer problem in a different direction in frame theory. Specifically the issue is to "thin out" frames to subsets that remain frames and have density arbitrary close to one, the critical density associated to a Riesz basis. Such a result belongs to a larger body of results describing the geometry of frame sets. The unifying concept in all these problems is redundancy of representations and atomic decompositions.
研究人员研究了两个问题,每个问题都利用了数学和工程中表示的冗余,并开发了从非线性处理方案中恢复信号的新方法。 第一个问题与从冗余线性表示的幅度进行信号重建有关(所谓的相位恢复问题)。 第二个问题涉及框架的几何分析以及与数学深层问题(例如卡迪森-辛格问题)的联系。 这种分析带来了更快的方法,可以在 X 射线晶体学、光纤数据通信和语音处理等应用中提供更好的重建信号质量和分辨率。 参与该项目的本科生和研究生通过学习开发新的数学工具来解决现实世界问题,接受培训,成为具有全球竞争力的 STEM 劳动力。研究人员研究两个问题,每个问题都利用数学和工程学中的表示冗余。 第一个导致了从非线性处理方案中恢复信号的新方法。 最近取得了两个影响深远的发现,将非线性信息(帧系数的大小)与较大嵌入空间中的某些标量积联系起来。 这样,恢复信号的原始问题(基本上是非线性的)被重新转换为与一阶近似问题相结合的线性重建问题。 当线性冗余表示与群表示(例如 Weyl-Heisenberg 或加窗傅立叶变换)相关联时,相关张量算子继承此不变性。 因此,快速(非线性)重建算法是可能的。 这种方法提出了一种新的信号表示模型,其中信号不是简单地由希尔伯特空间中的向量表示,而是由更大维的类希尔伯特-施密特空间中的算子表示,类似于量子态理论。 这里开发的方法借鉴了广泛的数学领域,例如调和分析、算子理论和代数几何。 反过来,这种方法可以为阵列信号处理、语音处理、量子计算和 X 射线晶体学等不同的电气工程领域提供稳定、高效的解决方案。 第二个问题在框架理论的不同方向上扩展了Kadison-Singer问题的解决方案。 具体来说,问题是将帧“稀疏”为保留帧的子集,并且密度任意接近于一,即与里斯基相关的临界密度。 这样的结果属于描述框架集几何形状的较大结果体。 所有这些问题的统一概念是表示和原子分解的冗余。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radu Balan其他文献
Evolution of the germanium–oxygen coordination number in lithium–lead–germanate glasses
锂铅锗酸盐玻璃中锗氧配位数的演变
- DOI:
10.1016/j.jnoncrysol.2016.01.015 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:0
- 作者:
M. Rada;N. Aldea;Z. Wu;Z. Jing;S. Rada;E. Culea;S. Macavei;Radu Balan;R. Suciu;R. Erhan;V. Bodnarchuk - 通讯作者:
V. Bodnarchuk
Simultaneous multislice EPI prospective motion correction by real‐time receiver phase correction and coil sensitivity map interpolation
通过实时接收器相位校正和线圈灵敏度图插值进行同步多层 EPI 前瞻性运动校正
- DOI:
10.1002/mrm.29789 - 发表时间:
2023-07-13 - 期刊:
- 影响因子:3.3
- 作者:
Bo Li;Ningzhi Li;Ze Wang;Radu Balan;T. Ernst - 通讯作者:
T. Ernst
Radu Balan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radu Balan', 18)}}的其他基金
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
- 批准号:
2108900 - 财政年份:2021
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 35.65万 - 项目类别:
Continuing Grant
Graduate Summer School in Modern Harmonic Analysis and Its Applications
现代调和分析及其应用研究生暑期学校
- 批准号:
1501640 - 财政年份:2015
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
I-Corps: Optimizing Sensor Arrays for Waveform Enhancement
I-Corps:优化传感器阵列以增强波形
- 批准号:
1440493 - 财政年份:2014
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
Nonlinear Signal Processing and Distributed Optimal Control using Frames and Operators Algebras
使用框架和算子代数的非线性信号处理和分布式最优控制
- 批准号:
1109498 - 财政年份:2011
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
Nonlinear Signal Processing and Wireless Communications using Frames and Operators Theory
使用框架和算子理论的非线性信号处理和无线通信
- 批准号:
0807896 - 财政年份:2008
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
相似国自然基金
多视影像的三维线云几何与语义协同重建方法
- 批准号:42301499
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于几何结构的场景三维重建
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于图像空间几何特征提取和视皮层背侧流机制的三维重建研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
高分辨率和结构保持的深度几何模型表达与生成
- 批准号:61902007
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
面向单肖像图像视频光影绘制的高分辨率人脸材质与几何重建研究
- 批准号:61902014
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric modeling and growth prediction of trees. Development of 3D reconstruction methods adapted to point clouds acquired in forests.
树木的几何建模和生长预测。
- 批准号:
18F18796 - 财政年份:2018
- 资助金额:
$ 35.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CRCNS: Geometry-based Brain Connectome Analysis
CRCNS:基于几何的脑连接组分析
- 批准号:
9788529 - 财政年份:2018
- 资助金额:
$ 35.65万 - 项目类别:
CIF: Small: Geometric, Variational Algorithms for Radiometric-Based Shape Reconstruction
CIF:小:基于辐射的形状重建的几何变分算法
- 批准号:
1526848 - 财政年份:2015
- 资助金额:
$ 35.65万 - 项目类别:
Standard Grant
Algorithms for geometric reconstruction problems
几何重建问题的算法
- 批准号:
227718-2010 - 财政年份:2014
- 资助金额:
$ 35.65万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for geometric reconstruction problems
几何重建问题的算法
- 批准号:
227718-2010 - 财政年份:2014
- 资助金额:
$ 35.65万 - 项目类别:
Discovery Grants Program - Individual