Many-Body Physics with Ultracold Atomic Fermions and Bosons

超冷原子费米子和玻色子的多体物理

基本信息

  • 批准号:
    1408309
  • 负责人:
  • 金额:
    $ 56.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Gases of atoms cooled to the ultra-low temperatures of 100 billionths of a degree above absolute zero have emerged as a highly versatile platform for the study of collective many-body behavior (the physics of how a collection of objects behaves in ways that is different from what one would expect from knowledge of how the objects behave individually). Such collective phenomena are usually associated with electrons in solid matter, where details about the crystal structure, strong interactions between electrons, and the underlying theory in physics which describes the system (quantum mechanics) can combine to create materials with highly unusual and sometimes very practical properties. The best known examples of such materials are high-temperature superconductors, in which electron currents flow without any resistance. Surprisingly, nearly 30 years after their discovery, physicists still do not understand the underlying mechanisms that create high-temperature superconductors; nor do they know if there is an upper bound on the superconducting temperature. Experiments with ultra-cold atoms on a so-called "optical lattice" created with light waves may help solve this mystery, thereby facilitating the development of practical applications of high temperature superconductors, including the efficient transmission of electrical energy and more cost-effective medical imaging. In this experiment, lithium atoms, which obey the same basic laws of physics as electrons, will act as stand-ins for the electrons in real materials. The atomic system is much cleaner than the real material, since there are no impurities, defects, or lattice dislocations. Furthermore, the parameters of the atomic system, including the atom-atom interaction strength, density, and the lattice parameters, are highly tunable. Ultra-cold lithium atoms will be used to create the most promising model and determine whether or not it contains the essence of superconductivity. The group will exploit the broad Feshbach resonances in the lithium isotopes, the fermion Li-6 and the boson Li-7, to explore many-body physics, in and out of lattices, in contexts that have both fundamental and practical implications. Realization of the full potential of ultracold atoms in optical lattices has been impeded by an inability to cool to sufficiently low temperatures. The group has recently demonstrated a method to evaporatively cool in optical lattices which resulted in the observation of antiferromagnetic correlations in the Fermi-Hubbard model, an archetypal model of condensed matter physics and the most prominent model of high-temperature superconductivity. Even lower temperatures are needed to explore the most novel strongly correlated phenomena. The group proposes to refine the cooling method, using Bragg scattering from magnetic correlations as a sensitive in-situ thermometer. With this system, the group plans to study the phase diagram of the Hubbard model for both repulsive and attractive interactions. Theory suggests that an attractive interaction combined with spin polarization (population imbalance) offers an exciting opportunity to observe the exotic FFLO pairing mechanism. Finally, for the bosonic isotope, the group will conduct a fundamental investigation of matter-wave tunneling for non-interacting and interacting Bose condensates to explore the role of the nonlinearity, including the regime of solitons. The barrier forms a beam splitter, which in a one-dimensional geometry constitutes a Mach-Zehnder interferometer. Its coherence properties and hence, its suitability as a matter-wave interferometer, will be explored.
冷却至绝对零以上十亿分之一度的超低温的原子气体已成为研究集体多体行为(一组物体如何以不同方式行为的物理学)的高度通用的平台。从人们对对象如何单独行为的了解中所期望的结果)。这种集体现象通常与固体物质中的电子相关,其中晶体结构的细节、电子之间的强相互作用以及描述系统的物理学基础理论(量子力学)可以结合起来创造出非常不寻常但有时非常实用的材料特性。此类材料最著名的例子是高温超导体,其中电子电流在没有任何电阻的情况下流动。令人惊讶的是,在他们的发现近 30 年后,物理学家仍然不了解创造高温超导体的根本机制;他们也不知道超导温度是否存在上限。在用光波创建的所谓“光学晶格”上进行超冷原子实验可能有助于解开这个谜团,从而促进高温超导体实际应用的发展,包括高效传输电能和更具成本效益的医疗成像。 在这个实验中,锂原子遵循与电子相同的基本物理定律,将充当真实材料中电子的替代品。原子系统比真实材料干净得多,因为没有杂质、缺陷或晶格位错。此外,原子系统的参数,包括原子间相互作用强度、密度和晶格参数,是高度可调的。超冷锂原子将被用来创建最有前途的模型,并确定它是否包含超导的本质。该小组将利用锂同位素、费米子 Li-6 和玻色子 Li-7 中广泛的费什巴赫共振,在具有基础和实际意义的背景下探索晶格内外的多体物理学。 由于无法冷却到足够低的温度,超冷原子在光学晶格中的全部潜力的实现受到阻碍。 该小组最近展示了一种在光学晶格中蒸发冷却的方法,从而在费米-哈伯德模型中观察到反铁磁相关性,费米-哈伯德模型是凝聚态物理的原型模型,也是最著名的高温超导模型。 探索最新颖的强相关现象需要更低的温度。 该小组建议改进冷却方法,利用磁关联的布拉格散射作为灵敏的原位温度计。 通过这个系统,该小组计划研究排斥和吸引相互作用的哈伯德模型的相图。 理论表明,吸引相互作用与自旋极化(群体不平衡)相结合为观察奇异的 FFLO 配对机制提供了令人兴奋的机会。 最后,对于玻色同位素,该小组将对非相互作用和相互作用玻色凝聚体的物质波隧道进行基础研究,以探索非线性的作用,包括孤子的状态。 屏障形成分束器,其在一维几何结构中构成马赫-曾德干涉仪。 我们将探讨其相干特性及其作为物质波干涉仪的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randall Hulet其他文献

Randall Hulet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Randall Hulet', 18)}}的其他基金

Quantum Simulation of an FFLO Superconductor
FFLO 超导体的量子模拟
  • 批准号:
    2309362
  • 财政年份:
    2023
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Quantum/Classical Boundaries in Matter-Wave Solitons
物质波孤子中的量子/经典边界
  • 批准号:
    2011829
  • 财政年份:
    2020
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Standard Grant
Quantum Gases of Bosonic and Fermionic Lithium
玻色子和费米子锂的量子气体
  • 批准号:
    1707992
  • 财政年份:
    2017
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint NSF-BSF Proposal: Nonlinear Dynamics with Gross-Pitaevskii Breathers
合作研究:NSF-BSF 联合提案:采用 Gross-Pitaevskii 呼吸器的非线性动力学
  • 批准号:
    1607215
  • 财政年份:
    2016
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Standard Grant
Interacting Bose-Einstein Condensates: Tunneling, Localization, and Beyond Mean-Field
相互作用的玻色-爱因斯坦凝聚态:隧道效应、局域化以及超越平均场
  • 批准号:
    1102515
  • 财政年份:
    2011
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium in 1, 2, and 3 Dimensions
1、2 和 3 维锂量子气体实验
  • 批准号:
    0801457
  • 财政年份:
    2008
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Strongly Correlated Physics in an Atomic Fermi Gas
原子费米气体中的强相关物理
  • 批准号:
    0457645
  • 财政年份:
    2005
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Tunable Interactions in Quantum Gases of Lithium
锂量子气体中的可调节相互作用
  • 批准号:
    0140353
  • 财政年份:
    2002
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium
锂量子气体实验
  • 批准号:
    9732632
  • 财政年份:
    1998
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Experimental Studies of Ultracold Atoms
超冷原子的实验研究
  • 批准号:
    9512688
  • 财政年份:
    1995
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant

相似国自然基金

cTAGE5介导B-body的形成调控早期卵母细胞成熟的机制研究
  • 批准号:
    32360182
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
我国居家脊髓损伤人群身体活动的环境-个人交互影响机制和同伴远程促进模式研究
  • 批准号:
    72374229
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
儿童白血病生存者身体活动的行为改变整合机制与亲子进阶式移动干预研究
  • 批准号:
    72374231
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
家庭视角下儿童身体活动促进的干预策略研究:基于SCT-HAPA-FFT整合模型
  • 批准号:
    72374012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大肠杆菌肠型与高龄老人身体机能衰退的关系及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
Computational Quantum Many-Body Physics
计算量子多体物理
  • 批准号:
    CRC-2017-00264
  • 财政年份:
    2022
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Canada Research Chairs
CAREER: Quantum many-body physics beyond the Boltzmann paradigm: prethermalization, many-body localization, and their applications
职业:超越玻尔兹曼范式的量子多体物理:预热、多体局域化及其应用
  • 批准号:
    2236517
  • 财政年份:
    2022
  • 资助金额:
    $ 56.14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了