Quantum/Classical Boundaries in Matter-Wave Solitons

物质波孤子中的量子/经典边界

基本信息

  • 批准号:
    2011829
  • 负责人:
  • 金额:
    $ 53.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

General audience abstract: Physicists have found that quantum mechanics works perfectly to describe the micro-world of single or small numbers of electrons, protons, or atoms. Quantum correlations in these small systems, known as “quantum entanglement,” are the primary attribute driving the quest to realize quantum computation. For a quantum computer to exhibit an advantage over an ordinary classical computer, however, the number of entangled particles must be large, thus presenting obstacles, both technical and fundamental, to their implementation. NSF-funded graduate student researchers will perform experiments that explore the limits of quantum entanglement in the largest systems to date using self-stabilizing wavepackets of atoms, known as solitons. Although large for a quantum system, containing as many as 10,000 atoms, solitons confined to a one-dimensional line are bestowed with a special robustness that makes them ideal for exploring how far quantum physics may be extended into the macro-world. These experiments will help us understand the quantum/classical boundary, and how it may be extended to even larger systems. By performing these experiments, graduate students, several from underrepresented groups, learn the methods of experimental atomic physics in a state-of-the-art laboratory, gaining expertise that will follow them in their careers in academia, government, or industry. Technical audience abstract:Solitons are dispersion-less excitations that arise in nonlinear systems. They are found both in classical and quantum wave phenomena, such as waves propagating in water, plasmas, optical fibers, and in matter waves to name just a few examples. Solitons are one of the few non-trivial systems that are described by an exactly integrable model. The researchers will continue their experimental investigation of bright matter-wave solitons produced from Bose-Einstein condensates with attractive interactions, and specifically, they will explore the role of integrability in determining the quantum/classical boundary. Recent theory predicts that integrability will protect a macro/mesoscopic object from decoherence, and can lead to the observation of effects that are manifestly quantum in objects expected to be best described by mean-field theories. By harnessing integrability, the effects of quantum fluctuations and quantum entanglement may be extended to systems with a large number of degrees of freedom, and which are large in physical size. The research team has two specific goals: 1) to observe the integrability-breaking effect of quantum fluctuations on the binding of a higher-order soliton breather and 2) to study the fast and slow collision regimes of a fundamental soliton interacting with a repulsive barrier made from a light sheet, and to exploit this geometry to realize a matter-wave soliton interferometer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:物理学家发现量子力学可以完美地描述这些小系统中单个或少量电子、质子或原子的微观世界,称为“量子纠缠”,是驱动的主要属性。然而,要实现量子计算,量子计算机要表现出优于普通经典计算机的优势,纠缠粒子的数量必须很大,这给 NSF 资助的研究生的实施带来了技术和基础上的障碍。研究人员将使用原子自稳定波包(称为孤子)进行实验,探索迄今为止最大的系统中量子纠缠的极限。虽然对于包含多达 10,000 个原子的量子系统来说,孤子很大,但孤子仅限于一维。线被赋予了特殊的鲁棒性,使它们成为探索量子物理可以扩展到宏观世界的理想选择,这些实验将帮助我们理解量子/经典边界,以及如何将其扩展到更大的范围。通过进行这些实验,研究生(其中一些来自代表性不足的群体)在最先进的实验室中学习实验原子物理学的方法,获得专业知识,这些知识将跟随他们在学术界、政府或工业界的职业生涯。技术受众摘要:孤子是非线性系统中出现的无色散激发,它们存在于经典波现象和量子波现象中,例如在水、等离子体、光纤和物质波中传播的波,仅举几个例子。孤子是由精确可积模型描述的少数非平凡系统之一,研究人员将继续对由具有吸引相互作用的玻色-爱因斯坦凝聚体产生的明亮物质波孤子进行实验研究,具体来说,他们将探索其作用。最近的理论预测,可积性将保护宏观/介观物体免于退相干,并且可以导致观察到物体中明显的量子效应。预计通过利用可积性,量子涨落和量子纠缠的效应可以扩展到具有大量自由度且物理尺寸较大的系统。具体目标:1) 观察量子涨落对高阶孤子呼吸者结合的可积破坏效应;2) 研究基本孤子与排斥势垒相互作用的快速和慢速碰撞机制该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-charge separation in a one-dimensional Fermi gas with tunable interactions
具有可调相互作用的一维费米气体中的自旋电荷分离
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Senaratne, Ruwan;Cavazos;Wang, Sheng;He, Feng;Chang, Ya;Kafle, Aashish;Pu, Han;Guan, Xi;Hulet, Randall G.
  • 通讯作者:
    Hulet, Randall G.
Quantum Simulators: Architectures and Opportunities
量子模拟器:架构和机遇
  • DOI:
    10.1103/prxquantum.2.017003
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Altman, Ehud;Brown, Kenneth R.;Carleo, Giuseppe;Carr, Lincoln D.;Demler, Eugene;Chin, Cheng;DeMarco, Brian;Economou, Sophia E.;Eriksson, Mark A.;Fu, Kai;et al
  • 通讯作者:
    et al
Creation and Characterization of Matter-Wave Breathers
物质波呼吸器的创造和表征
  • DOI:
    10.1103/physrevlett.125.183902
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Luo, D.;Jin, Y.;Nguyen, J. H. V.;Malomed, B. A.;Marchukov, O. V.;Yurovsky, V. A.;Dunjko, V.;Olshanii, M.;Hulet, R. G.
  • 通讯作者:
    Hulet, R. G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randall Hulet其他文献

Randall Hulet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Randall Hulet', 18)}}的其他基金

Quantum Simulation of an FFLO Superconductor
FFLO 超导体的量子模拟
  • 批准号:
    2309362
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Quantum Gases of Bosonic and Fermionic Lithium
玻色子和费米子锂的量子气体
  • 批准号:
    1707992
  • 财政年份:
    2017
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint NSF-BSF Proposal: Nonlinear Dynamics with Gross-Pitaevskii Breathers
合作研究:NSF-BSF 联合提案:采用 Gross-Pitaevskii 呼吸器的非线性动力学
  • 批准号:
    1607215
  • 财政年份:
    2016
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Many-Body Physics with Ultracold Atomic Fermions and Bosons
超冷原子费米子和玻色子的多体物理
  • 批准号:
    1408309
  • 财政年份:
    2014
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Interacting Bose-Einstein Condensates: Tunneling, Localization, and Beyond Mean-Field
相互作用的玻色-爱因斯坦凝聚态:隧道效应、局域化以及超越平均场
  • 批准号:
    1102515
  • 财政年份:
    2011
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium in 1, 2, and 3 Dimensions
1、2 和 3 维锂量子气体实验
  • 批准号:
    0801457
  • 财政年份:
    2008
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Strongly Correlated Physics in an Atomic Fermi Gas
原子费米气体中的强相关物理
  • 批准号:
    0457645
  • 财政年份:
    2005
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Tunable Interactions in Quantum Gases of Lithium
锂量子气体中的可调节相互作用
  • 批准号:
    0140353
  • 财政年份:
    2002
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium
锂量子气体实验
  • 批准号:
    9732632
  • 财政年份:
    1998
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experimental Studies of Ultracold Atoms
超冷原子的实验研究
  • 批准号:
    9512688
  • 财政年份:
    1995
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于历史水情景模型的江南古典园林水景适应度评估及其活化利用
  • 批准号:
    52308050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于根际氮循环微生物解析内蒙古典型草原植物的养分利用策略调控机制
  • 批准号:
    32371722
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
不同家畜放牧对内蒙古典型草原生态系统多功能性的影响机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内蒙古典型草原土壤有机碳稳定性对氮沉降的响应:十七年连续野外实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
内蒙古典型草原优势植物大针茅在不同放牧强度下的基因表达可塑性及相关适应机制鉴定
  • 批准号:
    32160088
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pushing the Boundaries of Classical and Quantum Information Processing Toward Enhanced Security and Energy-Efficient Reliability
突破经典和量子信息处理的界限,增强安全性和节能可靠性
  • 批准号:
    2112890
  • 财政年份:
    2021
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Accurate analysis on plastic deformation from grain boundaries using quantum-classical hybrid simulation
使用量子经典混合模拟精确分析晶界塑性变形
  • 批准号:
    19K04090
  • 财政年份:
    2019
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crossing quantum-classical boundaries in a single particle
在单个粒子中跨越量子经典边界
  • 批准号:
    DP150101863
  • 财政年份:
    2015
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Discovery Projects
Wells, Gates, and Bridges as Depicted in Classical Chinese Literature: "Places" as Boundaries and Their Surroundings
中国古典文学中的井、门、桥:作为边界及其周围的“地方”
  • 批准号:
    26770130
  • 财政年份:
    2014
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Exploration of classical-quantum and easy-hard boundaries
经典量子和易难边界的探索
  • 批准号:
    1314748
  • 财政年份:
    2013
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了