CRII: RI: TRUST—TRustworthy Uncertainty Propagation for Sequential Time-Series Analysis

CRII:RI:TRUST – 用于顺序时间序列分析的值得信赖的不确定性传播

基本信息

  • 批准号:
    2401828
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The massive production of time-series data through the internet of things, the digitalization of healthcare, and the rise of smart cities have surged the need for competent time-series modeling, analysis, and forecasting. Many critical applications rely on time-series analysis, including video analytics, stock market analysis, earthquake prediction, economic forecasting, healthcare monitoring and disease prognoses. Recent sequence machine learning (ML) models have achieved remarkable success in processing entire sequences of data (such as speech or video) and learning long-term dependencies of time-series. However, these sequence models are unable to understand or assess their uncertainty, particularly critical when predicting in heterogeneous and noisy environments or in the presence of an adversary. For example, missing a prediction of heart failure due to artifacts in the electrocardiogram (ECG) physiological signal or failing to detect a security vulnerability in a software product could cause tragic health, financial and societal damage to people and industries. This project will develop significant theoretical and algorithmic foundations for uncertainty quantification, self-assessment, and adversarial detection in modern ML sequence models towards safe and reliable time-series intelligent machines. The project will develop pioneering algorithms that are universally robust under noisy conditions and adversarial susceptions. The main focus is on sequential ML algorithms with quantified uncertainty for the provided solutions. Open-source implementations of the proposed algorithms will be publicly available for rapid dissemination and contribution to the ML community. Furthermore, the proposed research will support the cross-disciplinary development of a diverse cohort of graduate and undergraduate students at the University of Texas Rio Grande Valley and develop new courses, certificates, and research projects in trustworthy and robust ML.The primary technical aim of the project advocates a novel Bayesian estimation framework that propagates distributions across models’ non-linear layers inspired by powerful statistical frameworks for optimal tracking in non-linear and non-Gaussian systems. A comprehensive analysis of models’ performance and uncertainty measures under noisy conditions and adversarial attacks will pave the way for deploying sequential ML algorithms in a wide range of real-world applications. Applications of this research include industry and healthcare partners in the areas of security of industrial systems (in collaboration with Lockheed Martin Inc.) and brain tumor detection and surveillance from magnetic resonance imaging (in collaboration with MRIMath, LLC).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。通过物联网,医疗保健数字化以及智能城市的兴起的时间序列数据的大量生产飙升,需要有效的时间序列建模,分析和预测。许多关键应用依赖于时间序列分析,包括视频分析,股票市场分析,地震预测,经济预测,医疗保健监测和疾病进展。最近的序列机器学习(ML)模型在处理整个数据序列(例如语音或视频)和学习时间序列的长期依赖性方面取得了巨大的成功。但是,这些序列模型无法理解或评估其不确定性,尤其是在预测异质和噪声环境或在场的存在下进行预测时至关重要。例如,由于心电图(ECG)物理信号中的工件或未能检测到软件产品中的安全脆弱性可能会导致悲惨的健康,财务和社会损害对人们和行业的损害。该项目将为现代ML序列模型中的不确定性量化,自我评估和对抗性检测而开发重要的理论和算法基础,以实现安全可靠的时间序列智能机器。该项目将开发开拓性算法,这些算法在噪声条件和对抗性感受下普遍强大。主要重点是对所提供溶液具有量化不确定性的顺序ML算法。拟议算法的开源实施将公开用于快速传播和对ML社区的贡献。此外,拟议的研究将支持德克萨斯大学里奥格兰德大学(Rio Grande Valley)大学的多元化研究生和本科生的跨学科发展,并开发新课程,证书和研究项目,可信赖和强大的ML。在非线性和非高斯系统中。在噪声条件和对抗性攻击下对模型的性能和不确定性度量进行的全面分析将为在广泛的现实世界应用中部署顺序ML算法铺平道路。 Applications of this research include industry and healthcare partners in the areas of security of industrial systems (in collaboration with Lockheed Martin Inc.) and brain tumor detection and surveillance from magnetic resonance imaging (in collaboration with MRIMath, LLC).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Active Simultaneous Localization and Mapping Based on Bayesian Actor-Critic Reinforcement Learning
基于贝叶斯演员-批评家强化学习的鲁棒主动同步定位与建图
Self-Assessment and Robust Anomaly Detection with Bayesian Deep Learning
使用贝叶斯深度学习进行自我评估和鲁棒异常检测
TRustworthy Uncertainty Propagation for Sequential Time-Series Analysis in RNNs
Robust Denoising and DenseNet Classification Framework for Plant Disease Detection
用于植物病害检测的鲁棒去噪和 DenseNet 分类框架
Robust Software Vulnerability Detection Using Bayesian Gated Recurrent Unit
使用贝叶斯门控循环单元进行稳健的软件漏洞检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimah Dera其他文献

Level set segmentation using non-negative matrix factorization with application to brain MRI
  • DOI:
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimah Dera
  • 通讯作者:
    Dimah Dera

Dimah Dera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimah Dera', 18)}}的其他基金

CRII: RI: TRUST—TRustworthy Uncertainty Propagation for Sequential Time-Series Analysis
CRII:RI:TRUST – 用于顺序时间序列分析的值得信赖的不确定性传播
  • 批准号:
    2153413
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
  • 批准号:
    32200568
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Cooperative Agreement
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Cooperative Agreement
新しい口腔癌センチネルリンパ節マッピング法の確立-RI法との非劣性試験-
口腔癌前哨淋巴结定位新方法的建立-RI法非劣效性检验-
  • 批准号:
    24K20038
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
医療用RIの大量製造に向けた大強度He二価ECRイオン源の研究開発
医用RI量产用高强度He二价ECR离子源研发
  • 批准号:
    24KJ1107
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了