Molecular Ions: an Hybrid Atom-Ion Platform to Generate Quantum States
分子离子:产生量子态的混合原子离子平台
基本信息
- 批准号:1415560
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent developments in information technology are having a large impact on the society. One factor in the explosion of new technologies is the rapid increase in computing power, described by Moore's law: processor power doubles every 18 months. This is accompanied by a reduction in the size of the processors. In the near future, the actual processors based on classical treatment of information will reach the quantum limit; the uncertainty principle of quantum mechanics will come into play. Quantum Information Science (QIS) is a new approach to information science that takes advantage of laws of quantum mechanics. New advances in quantum information indicate that devices based on fundamental quantum principles, such as interference and entanglement, can perform certain tasks considerably more efficiently than any classical computer. Efforts in quantum information processing have led to protocols for quantum cryptography, and quantum algorithms. Many platforms have been studied for QIS, such as trapped ions, neutral atoms, Rydberg atoms, atoms in crystals, spin of particles, photons in cavity quantum electrodynamics (QED) or nonlinear optical setups, mesoscopic ensembles, and polar molecules.As the field of quantum information science matures, so do its goals. There is a search for more realistic and better scalable systems, for novel areas of application and stronger cross-fertilization with other areas in physics. A hybrid platform for generating quantum states and for quantum information processing, based on molecular ions will be studied, with an eye towards feasibility, scalability, and connection with other subfields in physics. This hybrid platform shares the advantages of other platforms; the long coherence times of neutral atoms, and strong interactions of trapped ions. The required properties of these systems will be studied in order to identify the best candidates among molecular ions that will allow the Coulomb interactions between atoms to be switched off and on. This will help guide efforts in designing new experimental apparatus for quantum information processing.The main effort relates to quantum information science, namely the possible generation of quantum states, and the implementation of phase gates. First, the use of molecular ions as enablers to design non-trivial states, such as non-local atoms will be explored. Specific species, alkali+alkaline earth and homonuclear alkaline earth diatomic molecular ions will be studied and their properties (energy surfaces, transition moments, hyperfine structure, etc.) computed. Second, arrays of neutral atoms and trapped ions that could be used to effectively create strong long-range interactions that can be switched on and off by using molecular ions as mediators to enable entanglement will be studied, systems, such as combinations of sodium (Na) and calcium (Ca), Na + Ca+, or Ca + Ca+. These new systems will be explored using realistic parameters from careful calculations, to help in understanding complex physical systems, and to predict new phenomena and to generate new theoretical concepts. The exploratory research on quantum computing with molecular ions promises to broaden the scope of QIS and atomic, molecular and optical physics to mesoscopic systems, and condensed matter physics.
信息技术的最新发展对社会产生了很大的影响。新技术爆炸的一个因素是计算能力的迅速增加,由摩尔定律描述:处理器功率每18个月增加一倍。这伴随着处理器的尺寸降低。在不久的将来,基于经典信息处理的实际处理器将达到量子限制;量子力学的不确定性原理将发挥作用。量子信息科学(QIS)是一种利用量子力学定律的信息科学的新方法。量子信息的新进展表明,基于基本量子原理的设备(例如干扰和纠缠)可以比任何经典计算机更有效地执行某些任务。量子信息处理的努力导致了量子密码学和量子算法的方案。已经研究了许多平台的QIS,例如被困的离子,中性原子,rydberg原子,晶体中的原子,颗粒的自旋,腔量子量子电动力学(QED)中的光子或非线性光学设置,中oscopicsemembles和Polar Molecules。正在寻找更现实,更可扩展的系统,用于新颖的应用领域以及与物理学其他领域的更强的交叉施肥。将研究一个用于生成量子状态和基于分子离子的量子信息处理的混合平台,并着眼于可行性,可伸缩性以及与物理中其他子场的联系。该混合动力平台具有其他平台的优势;中性原子的长相干时间以及被困离子的强相互作用。将研究这些系统的所需属性,以确定分子离子之间的最佳候选物,这将使原子之间的库仑相互作用被关闭。这将有助于指导设计用于量子信息处理的新实验设备的努力。主要工作与量子信息科学,即可能产生的量子状态以及相位门的实施有关。首先,将探索将分子离子用作设计非平凡状态(例如非本地原子)的推动因素。将研究特定的物种,碱性碱性土和同核碱性分子离子,并计算出它们的性能(能量表面,过渡矩,超细结构等)。其次,可以用来通过使用分子离子作为介质来启用纠缠的中性原子和被困的离子阵列,可用于有效地产生强大的远程相互作用,以启用纠缠,例如钠(Na)和钙(CA),Na + Ca + Ca + Ca + Ca +,或Ca + Ca +的系统,例如组合。这些新系统将使用仔细计算中的现实参数探索,以帮助理解复杂的物理系统,并预测新现象并产生新的理论概念。用分子离子进行量子计算的探索性研究有望扩大QIS和原子,分子和光学物理学的范围,并将其范围为介质系统,以及凝结物理物理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Cote其他文献
Robin Cote的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Cote', 18)}}的其他基金
ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
- 批准号:
2328774 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Rydberg Electrons as a Probe for Ultracold Systems
里德伯电子作为超冷系统的探针
- 批准号:
2034284 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Rydberg Electrons as a Probe for Ultracold Systems
里德伯电子作为超冷系统的探针
- 批准号:
1806653 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Student Support to Attend International Conference on Atomic Physics (ICAP) 2008
支持学生参加 2008 年国际原子物理会议 (ICAP)
- 批准号:
0834157 - 财政年份:2008
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Probing fundamental physics with ultracold systems
用超冷系统探索基础物理
- 批准号:
0653449 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
QnTM: Quantum Information Processing with Quantum Random Walks
QnTM:使用量子随机游走的量子信息处理
- 批准号:
0523431 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Ultracold Collisions to Probe Fundamental Physics
超冷碰撞探索基础物理
- 批准号:
0355030 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Ultracold Atoms for Probing Fundamental Physics
用于探测基础物理的超冷原子
- 批准号:
0140290 - 财政年份:2002
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
ITR: Quantum Information Processing with Ultracold Rydberg Atoms
ITR:使用超冷里德堡原子进行量子信息处理
- 批准号:
0082913 - 财政年份:2000
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
- 批准号:52302260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反常HfO2基铁电薄膜微束离子精准调控亚稳相的研究
- 批准号:52302151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Accelerating Gene Therapy and Editing with Advanced MS-Based Data Analysis for Nonstandard and Hybrid Nucleotide Sequences
通过基于 MS 的高级数据分析加速非标准和混合核苷酸序列的基因治疗和编辑
- 批准号:
10699241 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10654524 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10389392 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10319174 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10728494 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别: