Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
基本信息
- 批准号:10654524
- 负责人:
- 金额:$ 56.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATP phosphohydrolaseAcquired Immunodeficiency SyndromeAnimal ModelAntibodiesAntifungal AgentsAntifungal TherapyBacteriaBindingBiologicalCalciumCalcium ChannelCalcium SignalingCaspofunginCell DeathCell Membrane StructuresCell membraneCell physiologyCell surfaceCellsCellular MembraneCessation of lifeChelating AgentsCombined Modality TherapyCryo-electron tomographyCryptococcosisCryptococcusCryptococcus gattiiCryptococcus neoformansD CellsDataDevelopmentDiseaseDrug TargetingDrug resistanceDrug resistance pathwayElectron MicroscopeEnzymesEpitopesExhibitsFab ImmunoglobulinsFungal Drug ResistanceFutureGenerationsGenetic studyGoalsHIV/AIDSHomeostasisHumanImmunoglobulin FragmentsImmunoprecipitationImpairmentIn VitroInfectionIonsKnowledgeLipid BilayersLipidsLiposomesMacrophageMass Spectrum AnalysisMediatingMembraneMembrane ProteinsMethodsMissionModelingMolecularMolecular WeightMonoclonal AntibodiesMusMycosesOutcomePeptidesPhagocytosisPharmaceutical PreparationsPhosphatidylserinesPhospholipidsPolyenesProteinsResistanceRoleScanningSequence HomologySiblingsStructureSurfaceTestingTherapeuticToxic effectTreatment ProtocolsTriazolesUnited States National Institutes of HealthVesicleVirulencecell growth regulationdisorder controldisorder preventiondrug developmentdrug distributiondrug sensitivityechinocandin resistanceefficacious treatmentexportin 1 proteinforward geneticsfungicidefungusglucan synthasehuman pathogenin vivoinhibitormouse modelmutantnew therapeutic targetnovelnovel therapeuticsoverexpressionpathogenic funguspolyclonal antibodypre-clinicalresearch and developmentresistance mechanismsuccesstraffickingtreatment strategyuptakeyeast two hybrid system
项目摘要
Abstract
Cryptococcus neoformans and its sibling species C. gattii cause Cryptococcosis, a deadly fungal disease that
accounts for over 15% of HIV/AIDS related deaths. Treatment options for cryptococcosis remain limited to two
drug classes that are either highly toxic (polyenes) or exert a fungistatic effect (triazoles) that necessitate long
treatment regimens and can induce drug resistance. The third antifungal drug class, echinocandins, shows low
toxicity and is fungicidal against some prevalent fungal pathogens. However, Cryptococcus species are resistant
to echinocandins through an unknown resistance mechanism. We found that loss of Cdc50, the regulatory
subunit of lipid flippase, an enzyme that maintains asymmetry of the membrane lipid bilayers and regulates
intracellular vesicle trafficking, sensitizes C. neoformans to the echinocandin drug caspofungin and several
triazoles. We further showed that the cdc50∆ mutant abolishes lipid flippase activity. We also found that this
Cdc50-mediated echinocandin resistance requires a mechanosensitive calcium channel protein, Crm1, which
modulates intracellular calcium homeostasis. Strikingly, we discovered that lipid flippase function is essential for
virulence in a murine model of cryptococcosis, suggesting that lipid flippase may be a novel antifungal drug
target. In this project, our goals are to determine how lipid flippase mediates cryptococcal echinocandin
resistance, and to conduct proof-of-principle studies of antibody-based inhibitors targeting flippase function as
novel therapeutics for Cryptococcus infections. We hypothesize that C. neoformans has a unique plasma
membrane structure and that loss of lipid flippase alters that structure to promote the interaction of caspofungin
with its target and compromises fungal drug resistance mechanisms. We propose three Aims to test our
hypothesis. In Aim 1, we will elucidate how loss of Cdc50 changes membrane structure to promote the
interaction of caspofungin with its membrane target β-1,3-D-glucan synthase (Fks1). Aim 2 will identify the
downstream drug resistance pathways that are compromised by the absence of Cdc50, which disrupts
intracellular calcium homeostasis and promotes cell death. In Aim 3, we will develop an antibody Fab fragment
and a stable peptide against the exoplasmic loop of Cdc50, which is essential for flippase function. We will
validate how inhibitors sensitize C. neoformans to antifungal drugs and macrophage killing in vitro and in vivo in
animal models. The region of Cdc50 targeted by this antibody-based approach has low sequence homology to
its human counterpart, and our preliminary studies showed that an antibody raised against this region is fungal-
specific, reducing the chance of off-target effects. The impact of this study to elucidate the mechanisms
underlying lipid flippase mediated drug resistance in C. neoformans will be developing strategies for exploiting
echinocandin drugs to effectively treat Cryptococci and other resistant fungal pathogens. Our successful
development of antibody-based inhibitors will establish a new avenue of research and drug development against
other membrane proteins in fungi and bacteria.
抽象的
加密环球球菌及其兄弟姐妹种类C. gattii引起加密coscoccussis,一种致命的真菌疾病,是一种致命的真菌疾病
占艾滋病毒/艾滋病相关死亡的15%以上。隐球菌病的治疗选择仍然限制为两个
剧毒(polyeners)或发挥必要长的拟合作用(三唑)的药物类别
治疗方案并可以诱导耐药性。第三个抗真菌药物类Echinocandins显示出低
毒性是对某些普遍的真菌病原体的真菌。但是,加密环球具有抗性
通过未知的抗性机制来进行eChinocandins。我们发现CDC50的损失是调节性的
脂质Flippase的亚基,一种酶,该酶保持膜脂质双层的不对称和调节
细胞内囊泡运输,感应新生虫的棘齿药物caspofungin和几个
三轮唑。我们进一步表明,Cdc50Δ突变体废除了脂质氟脂酶的活性。我们还发现这个
Cdc50介导的棘齿抗蛋白的耐药需要机械敏感的钙通道蛋白CRM1,该蛋白
调节细胞内钙稳态。令人惊讶的是,我们发现脂质Flippase功能对于
在鼠的隐孢子虫模型中,病毒表明脂质氟脂酶可能是一种新型的抗真菌药物
目标。在这个项目中,我们的目标是确定脂质Flippase如何介导加密甲虫的echinocandin
抗性,并进行基于抗体的抑制剂的原则研究,以Flippase功能为抗体
加密环球感染的新疗法。我们假设C. Neoformans具有独特的等离子体
膜结构和脂质Flippase的损失会改变结构以促进caspofungin的相互作用
其目标并损害了真菌耐药性机制。我们提出了三个目标,以测试我们的
假设。在AIM 1中,我们将阐明CDC50的损失如何改变膜结构以促进
Caspofungin与其膜靶标β-1,3-D-葡聚糖合酶(FKS1)的相互作用。 AIM 2将确定
由于缺乏Cdc50而损害的下游耐药性途径,这会破坏
在AIM 3中,我们将开发一个抗体Fab片段
以及针对CDC50的质质环的稳定肽,这对于Flippase功能至关重要。我们将
验证抑制剂如何在体外和体内杀死抗真菌药物和巨噬细胞杀死抗真菌药物和巨噬细胞
动物模型。这种基于抗体的方法针对的CDC50区域与较低的序列同源性与
它的人类对应物和我们的初步研究表明,对该地区提出的抗体是真菌
具体,减少了脱靶效应的机会。这项研究阐明机制的影响
Neoformans中的潜在脂质Flippase介导的耐药性将开发用于利用的策略
echinocandin药物可有效治疗加密环球病毒和其他抗性真菌病原体。我们的成功
基于抗体的抑制剂的开发将建立针对研究和药物开发的新途径
真菌和细菌中的其他膜蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaoyang Xue其他文献
Chaoyang Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaoyang Xue', 18)}}的其他基金
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10389392 - 财政年份:2022
- 资助金额:
$ 56.73万 - 项目类别:
Lipid flippase in echinocandin drug resistance in Cryptococcus neoformans
脂质翻转酶在新型隐球菌棘白菌素耐药性中的作用
- 批准号:
10170266 - 财政年份:2020
- 资助金额:
$ 56.73万 - 项目类别:
The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
- 批准号:
9239514 - 财政年份:2016
- 资助金额:
$ 56.73万 - 项目类别:
The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
- 批准号:
9903576 - 财政年份:2016
- 资助金额:
$ 56.73万 - 项目类别:
The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
- 批准号:
10054979 - 财政年份:2016
- 资助金额:
$ 56.73万 - 项目类别:
Regulation of ubiquitin-proteasome in Cryptococcus pathogenesis
泛素蛋白酶体在隐球菌发病机制中的调控
- 批准号:
8969923 - 财政年份:2015
- 资助金额:
$ 56.73万 - 项目类别:
Mechanism of GPCR Signaling-mediated Fungal Cell Gigantism
GPCR信号介导真菌细胞巨型化的机制
- 批准号:
8765500 - 财政年份:2014
- 资助金额:
$ 56.73万 - 项目类别:
相似海外基金
SMC1A/3 cohesin complex-mediated silencing of unintegrated HIV-1 DNA and the antagonism by Vpr
SMC1A/3粘连蛋白复合物介导的未整合HIV-1 DNA的沉默和Vpr的拮抗作用
- 批准号:
10760648 - 财政年份:2023
- 资助金额:
$ 56.73万 - 项目类别:
MOLECULAR MECHANISMS OF V-ATPASES: ASSEMBLY, BIOGENESIS, REGULATION, AND FUNCTION
V-ATP酶的分子机制:组装、生物发生、调节和功能
- 批准号:
10501202 - 财政年份:2022
- 资助金额:
$ 56.73万 - 项目类别:
Molecular Mechanisms Of V-ATPases: Assembly,Biogenesis, Regulation, And Function
V-ATP 酶的分子机制:组装、生物发生、调节和功能
- 批准号:
10798892 - 财政年份:2022
- 资助金额:
$ 56.73万 - 项目类别:
MOLECULAR MECHANISMS OF V-ATPASES: ASSEMBLY, BIOGENESIS, REGULATION, AND FUNCTION
V-ATP酶的分子机制:组装、生物发生、调节和功能
- 批准号:
10664015 - 财政年份:2022
- 资助金额:
$ 56.73万 - 项目类别: