Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
基本信息
- 批准号:1410636
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHICAL SUMMARYThis award supports theoretical and computational research aimed to develop new design concepts and principles for shape memory alloys, and ferroelectric and ferromagnetic materials to achieve improved functionality for various applications. In these materials structural domains can switch from one to another by the application of an external field, such as stress, electric or magnetic fields, allowing sensing and actuation to be realized simultaneously. These smart materials have found critical applications in many fields, including medical devices, satellites, robots, navigation systems, data storage and retrieving, electromechanical and electro-optic systems, to name a few. However, typical domain structures formed in these materials are too large leading to properties that are not optimal for applications. Another common problem is that functional fatigue that leads to premature failure. The PIs will use advanced computational and theoretical methods to investigate new design concepts and principles that connect crystal structure, defects, domain structure and functional properties. These design concepts and principles are aimed to guide experimental efforts and accelerate the discovery of new smart as well as structural materials with optimal properties. This is in alignment with the Materials Genome Initiative. This project will directly prepare graduate students to immediately contribute to the success of integrated computational materials science and engineering. Additionally, the training of researchers involved in materials development will afford a rapid uptake of new design concepts and methodology, resulting in increased effectiveness of materials technologists. The educational outreach of the project is designed to have a significant influence on encouraging high school students who are members of underrepresented groups to enter science and engineering disciplines.TECHNICAL SUMMARYThis award supports theoretical and computational research that focuses on ferroic-based functional materials including shape memory alloys, and ferroelectric and ferromagnetic materials. The main objective of this project is to accelerate the discovery of novel low-hysteresis high-susceptibility ferroic-based functional materials with strong fatigue resistance via the design of (a) transformation pathway networks, and (b) structural and chemical heterogeneities. The former explores the means to achieve high susceptibility by identifying systems with isolated circular transformation pathways, while the latter explores how to transform conventional micron-sized, long-range ordered, self-accommodating strain, polarization and magnetization domains into nanodomains by suppressing autocatalysis and regulating the spatial extent of domain growth and coarsening during ferroic phase transitions. A rigorous theoretical framework will be developed based on group theory, phase transformation crystallography and graph methods to analyze transformation pathway networks (TPNs). Through investigating the symmetry and topology of TPN graphs, a new classification of structural phase transformations will be introduced. The PIs aim to distinguish three distinct TPN types: ones that could provide high susceptibility, ones that are reversible and exhibit shape memory effect, and ones that could generate dislocations through transformations causing functional fatigue. The PI will perform systematic first principles and atomistic calculations for specific systems to assist in constructing and classifying TPN graphs, to quantify the energy landscapes, and to investigate the effects of various crystalline defects. Finally phase field simulations will be carried out to examine possible continuous phase separations and other mechanisms to generate nanoscale structural and chemical non-uniformities in the parent phase and to study their effects on subsequent ferroic phase transitions and ferroic nanodomain formation. The responses of these ferroic nanodomains to temperature and external fields will be documented. Drastically different properties from those of their microdomain counterparts are expected, in particular ultra-low-modulus quasi-linear pseudoelasticity, low hysteresis, high susceptibility such as giant piezoelectricity, giant magnetostriction and giant non-hysteretic strain response, and strong fatigue resistance. The educational outreach of the project is designed to have a significant influence on encouraging high school students who are members of underrepresented groups to enter science and engineering disciplines.
非技术摘要这一奖项支持理论和计算研究,旨在开发新的设计概念和形状内存合金原理,以及铁电和铁磁材料,以提高各种应用的功能。在这些材料中,结构域可以通过应用外场(例如应力,电场或磁场)从一个切换到另一个域,从而可以同时实现感测和驱动。这些智能材料已经在许多领域中发现了关键的应用,包括医疗设备,卫星,机器人,导航系统,数据存储和检索,机电和电磁系统等等。但是,在这些材料中形成的典型域结构太大,导致对应用并非最佳的属性。另一个常见的问题是导致过早失败的功能疲劳。 PI将使用先进的计算和理论方法来研究连接晶体结构,缺陷,域结构和功能特性的新设计概念和原理。这些设计概念和原理的目的是指导实验努力,并加速具有最佳特性的新智能和结构材料。这与材料基因组倡议保持一致。该项目将直接为研究生做好准备,以立即为综合计算材料科学和工程的成功做出贡献。此外,培训参与材料开发的研究人员将迅速采用新的设计概念和方法,从而提高了材料技术人员的有效性。该项目的教育宣传旨在对鼓励代表性不足的团体成员进入科学和工程学科的高中生具有重大影响。技术摘要这一奖项支持理论和计算研究,该奖项专注于基于铁的功能材料,包括形状合金,以及铁电和铁磁材料。该项目的主要目的是通过(a)转换途径网络的设计以及(b)结构和化学异质性,加速新型低渗透率高渗透率高敏感性基于铁的功能材料。前者通过识别具有孤立的循环转换途径的系统来探索实现高敏感性的手段,而后者探索了如何转变传统的微米大小,远距离有序,自我实现的应变,极化和磁化结构域,从而通过抑制自动触及型的纳米构和抑制空间范围,并调节在跨性别阶段的空间范围。将根据群体理论,相变晶体学和图形方法来开发严格的理论框架,以分析转换途径网络(TPN)。通过研究TPN图的对称性和拓扑结构,将引入结构相变的新分类。 PI旨在区分三种不同的TPN类型:可以提供高敏感性的TPN类型,可逆性和表现出形状记忆效应的类型,以及可能通过导致功能疲劳的转换产生脱位的TPN类型。 PI将对特定系统执行系统的第一原理和原子计算,以帮助构建和分类TPN图,量化能量景观并研究各种晶体缺陷的影响。最终,将进行相位场模拟,以检查可能在父相中可能产生纳米级结构和化学不均匀的连续相分离和其他机制,并研究其对随后的铁族相变的影响以及铁反纳米域的形成。这些铁纳米域对温度和外部场的响应将记录在案。预计与其微分域的特性截然不同,特别是超低型准线性假弹性,低滞后,高易感性,例如巨型压电性,巨型磁曲折和巨大的磁性磁通量和巨大的非疗程性应变应变应变反应,强烈的疲劳反应,强烈的疲劳性抗性。该项目的教育宣传旨在对鼓励代表性不足的团体成员进入科学和工程学科的高中学生产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ju Li其他文献
Optical design and suspension system of the KAGRA output mode-cleaner
KAGRA 输出模清洁器的光学设计和悬挂系统
- DOI:
10.1088/1742-6596/957/1/012009 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Junko Kasuya;John Winterflood;Ju Li;Kentaro Somiya - 通讯作者:
Kentaro Somiya
CO2 conversion in a coaxial dielectric barrier discharge plasma reactor in the presence of mixed ZrO2-CeO2
存在混合 ZrO2-CeO2 的同轴介质阻挡放电等离子体反应器中的 CO2 转化
- DOI:
10.1016/j.jece.2020.104654 - 发表时间:
2020-10 - 期刊:
- 影响因子:7.7
- 作者:
Ju Li;Shengjie Zhu;Ke Lu;Cunhua Ma;Dezheng Yang;Feng Yu - 通讯作者:
Feng Yu
Hippo Signaling Regulates Blastema Formation During Limb Regeneration in Chinese Mitten Crab (Eriocheir sinensis)
河马信号调节中华绒螯蟹(Eriocheir sinensis)肢体再生过程中胚基的形成
- DOI:
10.1007/s10126-022-10194-0 - 发表时间:
2022-12 - 期刊:
- 影响因子:3
- 作者:
Yiran Wang;Xinrui Huang;Qiao Zhou;Yuxin Tian;Jinmei Zuo;Zengzhi Yuan;Yichen Liu;Ju Li;Jinsheng Sun - 通讯作者:
Jinsheng Sun
Multiple self-localized electronic states in trans-polyacetylene.
反式聚乙炔中的多个自局域电子态。
- DOI:
10.1073/pnas.0601314103 - 发表时间:
2006 - 期刊:
- 影响因子:11.1
- 作者:
Xi Lin;Ju Li;C. J. Först;S. Yip - 通讯作者:
S. Yip
第一原理計算によるハイエントロピー合金の諸特性の評価
使用第一性原理计算评估高熵合金的各种性能
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ping-Jiong Yang;Qing-Jie Li;Tomohito Tsuru;Shigenobu Ogata;Jie-Wen Zhang;Hong-Wei Sheng;Zhi-Wei Shan;Gang Sha;Wei-Zhong Han;Ju Li;Evan Ma;都留智仁,イバン ロブゼンコ,椎原良典,魏代修,弓削是貴,青柳吉輝,下川智嗣,久保百司,尾方成信,加藤秀実,橋本直幸,上田幹人,林重成,岡弘,礒部繁人 - 通讯作者:
都留智仁,イバン ロブゼンコ,椎原良典,魏代修,弓削是貴,青柳吉輝,下川智嗣,久保百司,尾方成信,加藤秀実,橋本直幸,上田幹人,林重成,岡弘,礒部繁人
Ju Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ju Li', 18)}}的其他基金
EAGER: SUPER: Electrochemical Protonation to Achieve Superconducting Matter
EAGER:SUPER:电化学质子化实现超导物质
- 批准号:
2132647 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Creep-enabled 3D solid-state lithium metal batteries
合作研究:可蠕变的3D固态锂金属电池
- 批准号:
2034902 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
- 批准号:
1923976 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Electrochemically driven Mechanical Energy Harvesting
合作研究:电化学驱动的机械能量收集
- 批准号:
1610806 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1066469 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1240696 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1240933 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1008104 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AHSS: Multi-scale Modeling of Deformation Mechanism for Design of New Generation of Steels
AHSS:用于新一代钢材设计的变形机制多尺度建模
- 批准号:
0728069 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
- 批准号:52305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全感知智能力控机器人系统设计及安全人机协作控制方法研究
- 批准号:U22A2060
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:62206091
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向人机协作的人机交互界面设计机制研究
- 批准号:72271053
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant