Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
基本信息
- 批准号:1923976
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational research to investigate new materials design concepts enabled by a new theory and computer simulations. The approach will be focused on an important class of smart materials – ferroelastic smart materials including superelastic metals and shape memory alloys (SMAs). Crystals can change their structures in response to an applied field, such as temperature, pressure or stress, electric or magnetic fields. Crystals have the property that sets of operations on a crystal leave the crystal looking the same. For example, 90-degree rotations around specific axes of a cubic crystal rotate atoms into the same positions previously occupied by atoms; the crystal is thus the same under such symmetry operations. Because of this crystal symmetry, changes associated with structural phase transformations can lead to the generation of multiple equivalent structural states. These states are interconnected by multiple equivalent forward and backward phase transformation pathways. These pathways can be represented pictorially as a graph that forms a web dubbed phase transformation graphs (PTGs). How a crystal traverses a PTG dictates all the “live” characteristics of structural phase transformations that underpin the practically important properties of a ferroelastic smart material. PTG analysis offers new opportunities to engineer smarter microstructures, the structure of crystals on scales larger than the atomic scale and able to be seen under modest magnification. Microstructures are connected to properties, particularly mechanical properties of materials. The PIs aim to develop microstructure designs that lead to materials with unprecedented properties. This research project will utilize the PTG "gene networks" in the design algorithms to "breed" new internal microstructures for improving functionality and performance of ferroelastic smart materials. The outcome of this research could benefit numerous advanced technological applications in automotive, aerospace, micro-electromechanical systems, and biomedical implants. The PTG analysis, just like phase diagrams in thermodynamics, is a fundamental tool in smart materials design and it can enrich undergraduate and graduate curricula in materials science and engineering. The intuitive nature of smart materials and their cool applications will help to encourage middle- and high-school students to enter science and engineering disciplines. The new alloy design strategies, PTG analysis and computer simulation techniques will be broadly disseminated at conferences, online tutorials, and in academic journals. TECHNICAL SUMMARYThis award supports theoretical and computational research to investigate new materials design concepts enabled by a new theory and computer simulations. It has yet to be recognized that the properties and performances of smart materials based on diffusionless transformations are dictated not only by the symmetry of the individual crystal structures involved and symmetry-breaking along a single phase transformation pathway (PTP), but also by the topology and symmetry of their phase transformation graphs (PTGs). The latter tells us how the multiple structural states of the parent and product phases are interconnected and what structural states could be visited by the system during multiple transformation cycles. The PIs will explore alloy design ideas and will address scientific issues by using a combination of PTG analysis, ab initio calculations, kinetic Monte Carlo, and phase field simulations. Specific scientific issues that will be addressed include: (a) Quantifying the connected pathways and free-energy barriers of transitions, including the symmetry-dictated non-PTPs that could alter the topology of PTGs and change the fundamental characteristics of the structural transformations and hence the functionality and performance of the smart materials; (b) Seeking answers for the following questions: What is the consequence of a biased random walk on PTG for microstructural evolution and functional fatigue? After dispersal on PTG, is there an effective way to “reset” the dispersed strain states at various spatial locations back to their original state and recover the original microstructure? (c) Making use of proper concentration modulations to regulate martensitic transformations and make linear super-elastic materials with large elastic strain limit, vanishing hysteresis, and ultralow pseudo-elastic modulus; (d) Characterizing the temperature- and rate-dependences of these transformations by predicting their activation strain-volume and pre-dominance of shuffling. Success of the project holds promise to transform ferroelastic materials design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论和计算研究,以研究由新理论和计算机模拟启用的新材料设计概念。该方法将集中在一类重要的智能材料上 - 铁弹性智能材料,包括超弹性金属和形状的内存合金(SMA)。晶体可以响应于应用场,例如温度,压力或应力,电场或磁场来改变其结构。晶体具有在晶体上设置操作的特性,使晶体看起来相同。例如,围绕特定轴的特定轴的三次晶体转子原子的特定轴旋转到先前被原子占据的相同位置;因此,在此类对称操作下,晶体是相同的。由于这种晶体对称性,与结构相变相关的变化可以导致多种等效结构状态的产生。这些状态通过多个等效的前向相转换途径互连。这些途径可以在图形上表示为形成称为Web的相变形图(PTGS)的图形。晶体如何遍历PTG,决定了结构相变的所有“实时”特征,这些转换是基于铁弹性智能材料实际上重要特性的所有“实时”特征。 PTG分析为设计更智能的微观结构提供了新的机会,即比原子尺度大的尺度上的晶体结构,并且能够在适度的放大倍率下看到。微观结构连接到特性,尤其是材料的机械性能。 PI旨在开发微观结构设计,从而导致具有前所未有的特性的材料。该研究项目将利用设计算法中的PTG“基因网络”来“繁殖”新的内部微观结构来改善铁弹性智能材料的功能和性能。这项研究的结果可以使汽车,航空航天,微电动机械系统和生物医学的众多高级技术应用受益。 PTG分析就像热力学中的相图一样,是智能材料设计的基本工具,它可以丰富材料科学和工程学中的本科和研究生课程。智能材料及其凉爽应用的直观性质将有助于鼓励中学和高中生进入科学和工程学科。新的合金设计策略,PTG分析和计算机仿真技术将在会议,在线教程和学术期刊上广泛传播。技术摘要这一奖项支持理论和计算研究,以研究由新理论和计算机模拟启用的新材料设计概念。尚未认识到,基于差异转换的智能材料的特性和性能不仅取决于沿单个相变途径(PTP)的单个晶体结构的对称性和对称性破坏对称性的决定,还取决于其相变图(PTGS)的拓扑和对称性。后者告诉我们,在多个转换周期期间,系统可以访问系统的多个结构状态和产品阶段的多个结构状态,以及系统可以访问哪些结构状态。 PI将探索合金设计思想,并通过使用PTG分析,从头算计算,动力学蒙特卡洛和相位场模拟的组合来解决科学问题。将要解决的具体科学问题包括:(a)量化过渡的连接途径和自由能的障碍,包括可以改变PTG拓扑的对称性非PTP,并改变结构转换的基本特征,并因此改变了智能材料的功能和性能; (b)寻求以下问题的答案:在PTG上随机步行对微结构进化和功能疲劳的结果是什么?分散在PTG上后,是否有一种有效的方法将分散的应变状态在各个空间位置回到其原始状态并恢复原始微观结构? (c)利用适当的浓度调制来调节马氏体转化,并制作具有较大弹性应变极限,消失滞后和超值伪弹性模量的线性超弹性材料; (d)通过预测其激活应变量和改组的预先优势来表征这些转化的温度和速率依赖性。该项目的成功有望改变铁弹性材料设计。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准评估,被认为是宝贵的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities
- DOI:10.1073/pnas.2115703118
- 发表时间:2021-12-14
- 期刊:
- 影响因子:11.1
- 作者:Wu, Menghao;Li, Ju
- 通讯作者:Li, Ju
High accuracy neural network interatomic potential for NiTi shape memory alloy
- DOI:10.1016/j.actamat.2022.118217
- 发表时间:2022-07
- 期刊:
- 影响因子:9.4
- 作者:Hao Tang;Yin Zhang;Qingjie Li;Haowei Xu;Yuchi Wang;Yunzhi Wang;Ju Li
- 通讯作者:Hao Tang;Yin Zhang;Qingjie Li;Haowei Xu;Yuchi Wang;Yunzhi Wang;Ju Li
Phase transitions in 2D materials
- DOI:10.1038/s41578-021-00304-0
- 发表时间:2021-04-09
- 期刊:
- 影响因子:83.5
- 作者:Li, Wenbin;Qian, Xiaofeng;Li, Ju
- 通讯作者:Li, Ju
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ju Li其他文献
Optical design and suspension system of the KAGRA output mode-cleaner
KAGRA 输出模清洁器的光学设计和悬挂系统
- DOI:
10.1088/1742-6596/957/1/012009 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Junko Kasuya;John Winterflood;Ju Li;Kentaro Somiya - 通讯作者:
Kentaro Somiya
CO2 conversion in a coaxial dielectric barrier discharge plasma reactor in the presence of mixed ZrO2-CeO2
存在混合 ZrO2-CeO2 的同轴介质阻挡放电等离子体反应器中的 CO2 转化
- DOI:
10.1016/j.jece.2020.104654 - 发表时间:
2020-10 - 期刊:
- 影响因子:7.7
- 作者:
Ju Li;Shengjie Zhu;Ke Lu;Cunhua Ma;Dezheng Yang;Feng Yu - 通讯作者:
Feng Yu
Hippo Signaling Regulates Blastema Formation During Limb Regeneration in Chinese Mitten Crab (Eriocheir sinensis)
河马信号调节中华绒螯蟹(Eriocheir sinensis)肢体再生过程中胚基的形成
- DOI:
10.1007/s10126-022-10194-0 - 发表时间:
2022-12 - 期刊:
- 影响因子:3
- 作者:
Yiran Wang;Xinrui Huang;Qiao Zhou;Yuxin Tian;Jinmei Zuo;Zengzhi Yuan;Yichen Liu;Ju Li;Jinsheng Sun - 通讯作者:
Jinsheng Sun
Multiple self-localized electronic states in trans-polyacetylene.
反式聚乙炔中的多个自局域电子态。
- DOI:
10.1073/pnas.0601314103 - 发表时间:
2006 - 期刊:
- 影响因子:11.1
- 作者:
Xi Lin;Ju Li;C. J. Först;S. Yip - 通讯作者:
S. Yip
第一原理計算によるハイエントロピー合金の諸特性の評価
使用第一性原理计算评估高熵合金的各种性能
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ping-Jiong Yang;Qing-Jie Li;Tomohito Tsuru;Shigenobu Ogata;Jie-Wen Zhang;Hong-Wei Sheng;Zhi-Wei Shan;Gang Sha;Wei-Zhong Han;Ju Li;Evan Ma;都留智仁,イバン ロブゼンコ,椎原良典,魏代修,弓削是貴,青柳吉輝,下川智嗣,久保百司,尾方成信,加藤秀実,橋本直幸,上田幹人,林重成,岡弘,礒部繁人 - 通讯作者:
都留智仁,イバン ロブゼンコ,椎原良典,魏代修,弓削是貴,青柳吉輝,下川智嗣,久保百司,尾方成信,加藤秀実,橋本直幸,上田幹人,林重成,岡弘,礒部繁人
Ju Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ju Li', 18)}}的其他基金
EAGER: SUPER: Electrochemical Protonation to Achieve Superconducting Matter
EAGER:SUPER:电化学质子化实现超导物质
- 批准号:
2132647 - 财政年份:2021
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Collaborative Research: Creep-enabled 3D solid-state lithium metal batteries
合作研究:可蠕变的3D固态锂金属电池
- 批准号:
2034902 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: Electrochemically driven Mechanical Energy Harvesting
合作研究:电化学驱动的机械能量收集
- 批准号:
1610806 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
- 批准号:
1410636 - 财政年份:2014
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1240696 - 财政年份:2011
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1066469 - 财政年份:2011
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1240933 - 财政年份:2011
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1008104 - 财政年份:2010
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
AHSS: Multi-scale Modeling of Deformation Mechanism for Design of New Generation of Steels
AHSS:用于新一代钢材设计的变形机制多尺度建模
- 批准号:
0728069 - 财政年份:2008
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
相似国自然基金
具有折扣代价泛函或遍历代价泛函的无穷时区平均场控制论的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有折扣代价泛函或遍历代价泛函的无穷时区平均场控制论的研究
- 批准号:12201343
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
有奇点弱双曲流的遍历性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有奇点弱双曲流的遍历性研究
- 批准号:12201543
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非光滑动力系统的遍历论和大范围变分方法研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Salary Programs