GOALI: Development of Metallic MEMS Materials for Extreme Environments
目标:开发适用于极端环境的金属 MEMS 材料
基本信息
- 批准号:1410301
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Summary: Over the past several decades micro-devices and microelectromechanical systems (MEMS) have found uses as ink jet printers, accelerometers, gyroscopes, pressure sensors, and digital light projectors and have become a multi-billion dollar industry. This study is motivated by the fact that a broader spectrum of MEMS materials would offer a wider range of functionality and fuel a greatly expanded assortment of MEMS applications. Elevated temperature MEMS devices are of particular interest in: aviation, automotive, power generation, sub-sea drilling, and chemical processing industries in which MEMS sensing and guidance in harsh environments would provide enhanced feedback and control. Metal MEMS alloys that offer: high density, electrical and thermal conductivity, strength, ductility and toughness; low cost; and fabrication routes for complex geometries would be especially attractive for these applications. But, highly engineered metallic alloys that can be sculpted with submicron resolution are currently not in the suite of available MEMS materials. For this reason, an interdisciplinary team from Johns Hopkins University (JHU) and General Electric Global Research (GEGR) has been formed to undertaking a collaborative program to develop Metal MEMS alloys for use as high temperature MEMS sensors and micro-switches. Extended internships at GEGR will provide students with an invaluable perspective on systems level materials integration. Participation in the SABES outreach program (an NSF-sponsored partnership between JHU and Baltimore City Public Schools) also provides the PI and his students with the chance to pay it forward by giving Baltimore elementary school students a unique perspective on STEM activities.Technical Summary:An interdisciplinary team from Johns Hopkins University (JHU) and General Electric Global Research (GEGR)is undertaking a collaborative program to develop metal MEMS alloys for high temperature MEMS sensors and micro-switches. The motivation for this collaboration lies in the desire to expand the MEMS material set beyond silicon to metallic alloys that can be deposited and shaped on the micro-scale and offer an attractive balance of properties: electrical and thermal conductivity, high density, low thermal expansion, strength, ductility, and toughness. The intellectual challenges to be addressed include the establishment of a science-based protocol for developing metal MEMS alloys that possess requisite physical and mechanical properties and can be used in extreme environments, e.g. temperatures of 300-500ºC for operational lifetimes exceeding one year. Candidate single- and multi-phase alloys have been identified and are being used to improve scientific understanding in five areas: (i) techniques for processing and shaping metallic alloys at the micro-scale, (ii) alloy design for dimensional stability, (iii) unique microstructure-mechanical property pathways and relations in alloys deposited far-from-equilibrium, (iv) thermal and mechanical drivers for microstructural evolution, and (v) integration of metal MEMS alloys into commercial applications. Fundamental processing-structure-properties studies at JHU have been designed to provide a foundation for concurrent GEGR efforts on the development of next-generation MEMS switches and sensors. Extended internships at GEGR are planned and will provide the visiting graduate student with an invaluable perspective on systems level materials integration. Moreover, participation in the SABES program (an established NSF-sponsored partnership between JHU and Baltimore City Public Schools) provides the PI and his students the chance to give Baltimore elementary school students a unique perspective on STEM research.
非技术摘要:在过去的几十年中,微设备和微电机电系统(MEMS)发现用作墨水打印机,加速度计,陀螺仪,压力传感器和数字灯光投影仪,并已成为千万亿美元的行业。这项研究的激励是,以下事实:更广泛的MEMS材料将提供广泛的功能,并为各种MEMS应用提供巨大扩展。温度升高的MEMS设备特别感兴趣:航空,汽车,发电,海底钻探以及化学加工行业,其中MEMS在Harmsh环境中的敏感性和指导将提供增强的反馈和控制。提供提供的金属MEMS合金:高密度,电导和热导率,强度,延展性和韧性;低成本;复杂几何形状的制造路线对于这些应用特别有吸引力。但是,可以用亚微米分辨率雕刻的高度工程的金属合金目前不在可用的MEMS材料套件中。因此,已经成立了约翰·霍普金斯大学(JHU)和通用全球研究(GEGR)的跨学科团队,以开发一项协作计划,以开发金属MEMS合金,以用作高温MEMS传感器和微型转换。 GEGR的扩展企业将为学生提供有关系统级材料集成的宝贵观点。 Participation in the SABES outreach program (an NSF-sponsored partnership between JHU and Baltimore City Public Schools) also provides the PI and his students with the chance to pay it forward by giving Baltimore elementary school students a unique perspective on STEM activities.Technical Summary:An interdisciplinary team from Johns Hopkins University (JHU) and General Electric Global Research (GEGR) is undertaking a collaborative program to develop metal MEMS高温MEMS传感器和微切口的合金。这种合作的动机在于渴望将硅材料从硅范围内扩展到金属合金,这些材料可以在微尺度上沉积和形状,并提供有吸引力的特性平衡:电气和导热率,高密度,低热量膨胀,强度,强度,强度,耐牙能和韧性。要解决的智力挑战包括建立基于科学的协议,以开发具有必要的物理和机械特性的金属MEMS合金,并可以在极端环境中使用,例如运营寿命的300-500ºC的温度超过一年。已经确定了候选单相和多相合金,并用于改善五个领域的科学理解:(i)在微尺度上处理和塑造金属合金的技术,(ii)尺寸稳定性的合金设计,(III)(iii)独特的微观结构属性属性途径和微型范围内的机能范围和关系,(IV)的机制,(IV)的机制(IV),(IV),(IV)(IV)(IV)(IV),(IV),IV(IV);进化,(v)将金属mems合金整合到商业应用中。 JHU的基本处理结构 - 培训研究已旨在为GEGR在下一代MEMS开关和传感器的开发方面的同时努力提供基础。计划在GEGR进行扩展实习,并将为来访的研究生提供有关系统级材料集成的宝贵观点。此外,参加SABES计划(JHU和Baltimore City公立学校之间已建立的NSF赞助的合作伙伴关系)为PI和他的学生提供了使Baltimore小学学生对STEM研究的独特观点的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Kevin Hemker的其他基金
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:23138602313860
- 财政年份:2023
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
Experimental Characterization of Deformation Mechanisms in Magnesium Rare Earth Alloys
镁稀土合金变形机制的实验表征
- 批准号:17098651709865
- 财政年份:2017
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
Materials World Network: Collaborative Research: Quantifying the Role of Impurities that Control Stress-Driven Grain Growth in Nanocrystalline Metals
材料世界网络:合作研究:量化控制纳米晶金属中应力驱动晶粒生长的杂质的作用
- 批准号:10081561008156
- 财政年份:2011
- 资助金额:$ 42万$ 42万
- 项目类别:Continuing GrantContinuing Grant
Materials World Network: NSF-Germany (DFG) Materials Collaboration: LIGA Ni-base Superalloys for MEMS Applications
材料世界网络:NSF-德国 (DFG) 材料合作:用于 MEMS 应用的 LIGA 镍基高温合金
- 批准号:08067530806753
- 财政年份:2008
- 资助金额:$ 42万$ 42万
- 项目类别:Continuing GrantContinuing Grant
NSF-Germany Materials Collaboration: High Temperature Materials for Microelectromechanical Systems
NSF-德国材料合作:用于微机电系统的高温材料
- 批准号:05026690502669
- 财政年份:2005
- 资助金额:$ 42万$ 42万
- 项目类别:Continuing GrantContinuing Grant
GOALI: Comibinatorial Methods and Micro-Scale Characterization Techniques for TBC Optimization
GOALI:TBC 优化的组合方法和微尺度表征技术
- 批准号:04138030413803
- 财政年份:2004
- 资助金额:$ 42万$ 42万
- 项目类别:Continuing GrantContinuing Grant
TBC Bond Coat Properties and Dynamics
TBC 粘合涂层性能和动力学
- 批准号:02215320221532
- 财政年份:2003
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
NIRT: Uncovering Deformation Mechanisms of Nanostructured Materials
NIRT:揭示纳米结构材料的变形机制
- 批准号:02102150210215
- 财政年份:2002
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
GOALI: Use Of Microsample Testing To Characterize and Model Bond Coat Performance and TBC Life
GOALI:使用微量样品测试来表征和模拟粘合涂层性能和 TBC 寿命
- 批准号:99867529986752
- 财政年份:2000
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
Understanding and Modeling the Creep Behavior of Lamellar TiA1 Based Alloys
了解层状 TiA1 基合金的蠕变行为并对其进行建模
- 批准号:97137319713731
- 财政年份:1997
- 资助金额:$ 42万$ 42万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
加速分子动力学方法的发展及其在负载金属颗粒生长机理的应用研究
- 批准号:22373055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蔬菜重金属在NAFLD人群中的生物有效性及其对肝病发展进程影响机制
- 批准号:42367064
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
金属材料学科发展战略与学科代码修订研讨
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:
金属转运蛋白Slc39a在脂肪肝发展中的作用及机制研究
- 批准号:32200961
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属材料学科发展战略与学科代码修订研讨
- 批准号:52242106
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
The development of multi-metallic low oxidation state main-group compounds
多金属低氧化态主族化合物的研制
- 批准号:EP/Y000129/1EP/Y000129/1
- 财政年份:2024
- 资助金额:$ 42万$ 42万
- 项目类别:Research GrantResearch Grant
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
- 批准号:23H0191723H01917
- 财政年份:2023
- 资助金额:$ 42万$ 42万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
- 批准号:23H0200523H02005
- 财政年份:2023
- 资助金额:$ 42万$ 42万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Precise Molecular Design of Highly Active Metal Ion Clusters and Development of Catalytic Functions
高活性金属离子簇的精确分子设计和催化功能的开发
- 批准号:23K1736523K17365
- 财政年份:2023
- 资助金额:$ 42万$ 42万
- 项目类别:Grant-in-Aid for Challenging Research (Pioneering)Grant-in-Aid for Challenging Research (Pioneering)
Development of C–O bond functionalization by cooperative transition metal catalysis
C的发展
- 批准号:22KJ197822KJ1978
- 财政年份:2023
- 资助金额:$ 42万$ 42万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows