Understanding and Modeling the Creep Behavior of Lamellar TiA1 Based Alloys
了解层状 TiA1 基合金的蠕变行为并对其进行建模
基本信息
- 批准号:9713731
- 负责人:
- 金额:$ 26.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-15 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
*** 9713731 Hemker Fully lamellar two phase TiAl based intermetallic alloys offer a very attractive mix of mechanical properties and are considered to be strong candidates for replacing nickel base superalloys in several structural applications involving temperatures of up to 900' C. At these temperatures, the creep performance of these alloys is of primary concern. Unfortunately, our understanding of the processes that control high temperature deformation in many advanced materials, including TiAl, is currently rather limited. The underlying creep mechanisms in these advanced alloys are often quite different from that in pure metals; the influence of steady-state creep is much smaller than it is in pure metals, and transient deformation processes (i.e.. primary and tertiary creep) have been found to dominate the creep behavior. In these cases, the Dorn description of power-law creep is no longer valid and attempts to characterize the creep behavior with activation energies and stress exponents, derived from minimum creep rates, have met with very limited success. This has profound consequences for the prediction of creep performance, because the FEM codes used for creep analysis require the input of creep laws that characterize the creep behavior of the material. Wherever possible it is desirable to have these laws based on the physical deformation mechanisms. The widely referenced Dorn description of power-law creep is based on diffusion assisted climb in recovery processes that lead to steady state creep. However, as is shown in the PI's RIA related research, in most intermetallic alloys, including TiAl , the diffusion-assisted recovery processes which lead to steady state creep in pure metals are replaced by a gradual evolution of the deformation microstructure. For this reason, the Dorn equation cannot be used to model creep in this set of alloys and it is necessary to develop an alternative set of mechanism-based creep relations for TiAl based lamellar alloys. The primary goal of this work will be to derive a fundamental set of creep laws that are based on observations of microstructural evolution as a function of creep strain. This will require a close integration of mechanics and materials and will involve work at three specific length scales: i) the microscopic deformation mechanisms will be identified and characterized by TEM observations of fully lamellar polycrystalline specimens that have been crept to various amounts of creep strain, ii) the mesoscopic effects of grain size, lamellar spacing, and lamellar orientation will be separated and characterized with single crystal and microsample creep tests, and iii) the macroscopic creep behavior of these alloys will be modeled with constitutive relations that are based on the micro-and mesoscopic measurements. The PI's experience with creep testing, TEM, and TiAl has been teamed with the co-PI's expertise in developing continuum models of multiphase materials in order to assure a bridge between the mechanics and materials issues in this study.***
*** 9713731 Hemker完全层状基准合金提供了机械性能的非常有吸引力的混合物,被认为是在多种结构性应用中更换镍基本超合金的强大候选物,涉及多达900'的温度。不幸的是,我们对控制许多高级材料(包括TIAL)的高温变形的过程的理解目前相当有限。 这些高级合金中的潜在蠕变机制通常与纯金属中的蠕变机制差异很大。 稳态蠕变的影响要比纯属金属小得多,并且已经发现瞬态变形过程(即一级和三级蠕变)占主导地位的蠕变行为。在这些情况下,对幂律蠕变的多元描述不再有效,并且试图用激活能量和应力指数来表征蠕变行为,并从最低蠕变率衍生出来,取得了非常有限的成功。 这对蠕变性能的预测产生了深远的影响,因为用于蠕变分析的FEM代码需要蠕变定律的输入,以表征材料的蠕变行为。在可能的情况下,希望根据物理变形机制获得这些定律。广泛参考的幂律蠕变的多子描述基于导致稳态蠕变的恢复过程中的扩散辅助攀登。但是,正如PI的RIA相关研究所示,在包括TIAL在内的大多数金属合金中,扩散辅助恢复过程导致纯金属中稳态蠕变被变形微结构的逐渐演变所取代。因此,Dorn方程不能用于在这组合金中模拟蠕变,并且有必要为基于TIAL的层状合金开发一组替代基于机制的蠕变关系。 这项工作的主要目标是得出基于对微观结构进化的观察结果的基本蠕变定律,这是蠕变菌株的函数。 这将需要紧密整合力学和材料,并将涉及三个特定长度尺度的工作:i)微观变形机制将被识别,并以对完全层状多晶样本的观察,这些样品的观察到已被捕捉到各种蠕变的各种蠕变的晶状体尺寸,ii)单一尺寸和lamellar sprient,lamellar sprient and lam space and lam spacept,lam sprient,lam sprient and lam sparn and lam sprient and lam sprient,lam lam sprient of limallar的表现和Microsample蠕变测试,以及iii)这些合金的宏观蠕变行为将以基于微观和介绍测量的本构关系进行建模。 PI在蠕变测试,TEM和TIAL方面的经验与Co-Pi在开发多相材料的连续模型方面的专业知识合作,以确保本研究中的力学和材料问题之间的桥梁。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Hemker其他文献
Kevin Hemker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Hemker', 18)}}的其他基金
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313860 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
Experimental Characterization of Deformation Mechanisms in Magnesium Rare Earth Alloys
镁稀土合金变形机制的实验表征
- 批准号:
1709865 - 财政年份:2017
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
GOALI: Development of Metallic MEMS Materials for Extreme Environments
目标:开发适用于极端环境的金属 MEMS 材料
- 批准号:
1410301 - 财政年份:2014
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
Materials World Network: Collaborative Research: Quantifying the Role of Impurities that Control Stress-Driven Grain Growth in Nanocrystalline Metals
材料世界网络:合作研究:量化控制纳米晶金属中应力驱动晶粒生长的杂质的作用
- 批准号:
1008156 - 财政年份:2011
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
Materials World Network: NSF-Germany (DFG) Materials Collaboration: LIGA Ni-base Superalloys for MEMS Applications
材料世界网络:NSF-德国 (DFG) 材料合作:用于 MEMS 应用的 LIGA 镍基高温合金
- 批准号:
0806753 - 财政年份:2008
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
NSF-Germany Materials Collaboration: High Temperature Materials for Microelectromechanical Systems
NSF-德国材料合作:用于微机电系统的高温材料
- 批准号:
0502669 - 财政年份:2005
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
GOALI: Comibinatorial Methods and Micro-Scale Characterization Techniques for TBC Optimization
GOALI:TBC 优化的组合方法和微尺度表征技术
- 批准号:
0413803 - 财政年份:2004
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
TBC Bond Coat Properties and Dynamics
TBC 粘合涂层性能和动力学
- 批准号:
0221532 - 财政年份:2003
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
NIRT: Uncovering Deformation Mechanisms of Nanostructured Materials
NIRT:揭示纳米结构材料的变形机制
- 批准号:
0210215 - 财政年份:2002
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
GOALI: Use Of Microsample Testing To Characterize and Model Bond Coat Performance and TBC Life
GOALI:使用微量样品测试来表征和模拟粘合涂层性能和 TBC 寿命
- 批准号:
9986752 - 财政年份:2000
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
相似国自然基金
热液改造型页岩成储机理研究——以松辽盆地青一段为例
- 批准号:42372150
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:52205201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
- 批准号:
2340174 - 财政年份:2024
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
Catalyst Project: Microstructural Evolution and Constitutive Modeling of Creep and Elevated Temperature Quasi-Static Tensile Deformation in Additively Manufactured Grade 91 Alloy
催化剂项目:增材制造 91 级合金蠕变和高温准静态拉伸变形的微观结构演化和本构建模
- 批准号:
2200613 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
Geological analysis for grain boundary sliding creep of olivine and its possible contribution to non-steady state behaviours of subduction boundaries
橄榄石晶界滑动蠕变的地质分析及其对俯冲边界非稳态行为的可能贡献
- 批准号:
20K04128 - 财政年份:2020
- 资助金额:
$ 26.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling Creep of Short Fiber Reinforced Concrete
短纤维混凝土的徐变建模
- 批准号:
422068083 - 财政年份:2019
- 资助金额:
$ 26.99万 - 项目类别:
Research Fellowships
Creep modeling of precision adhesive joints in opto-electronic devices
光电器件中精密粘合接头的蠕变建模
- 批准号:
463690-2014 - 财政年份:2015
- 资助金额:
$ 26.99万 - 项目类别:
Collaborative Research and Development Grants