Beyond Conventional Methods: Chemical Routes to Dope Topological Insulator Nanostructures and Two-Dimensional Materials Magnetically

超越传统方法:磁性掺杂拓扑绝缘体纳米结构和二维材料的化学路线

基本信息

  • 批准号:
    1402600
  • 负责人:
  • 金额:
    $ 39.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

**Non-Technical Description**This award from the Condensed Matter Physics Program of the Division of Materials Research supports Yale University with a project to develop novel chemical doping methods for topological insulator nanostructures to alleviate current materials challenges facing the field. Topological insulators possess exotic conducting surface states that can be used as information carriers that do not generate wasted heat. Thus topological insulators can replace current copper interconnects, resulting in great reduction of energy consumption for the society. This research will bring the realization of topological insulators as alternative interconnects one step closer to reality. Additionally, the methods can be successfully applied to two-dimensional, layered semiconductors to create dilute magnetic semiconductors for much broader impact for the society. Dilute magnetic semiconductors are widely studied for spintronics applications. The work contributes to the training of skilled technical workforce and contains elements for new course development on nanomaterials. In addition, the project promotes the participation of underrepresented groups.**Technical Description**This award from the Condensed Matter Physics Program of the Division of Materials Research to Yale University supports a project to develop novel chemical methods to dope topological insulator nanomaterials with magnetic impurities, and to open a band gap in the topological surface states. Two chemical methods are investigated. The first method employs intercalation of magnetic atoms, ions, and molecules at the Van der Waals gap of layered topological insulators. The second method employs surface modification of topological insulator nanostructures with molecular spins. These methods exhibit significant advantages over conventional doping methods: 1) higher concentration of magnetic dopants, 2) no clustering of magnetic dopants, 3) spatial ordering of magnetic dopants into anti-ferromagnetism or ferromagnetism, and 4) broad applicability to other two-dimensional layered materials. Nanodevices will be fabricated to measure magnetotransport at low temperature to characterize the doping. The successful outcome of this research will lead to a materials platform in which fundamental condensed matter physics phenomena can be explored to advance knowledge in band gap in topological surface states, in topological magneto-electric effect, and quantum anomalous Hall effect. It is anticipated that the methodology developed in this project can be general. The research involves training undergraduate students to conduct research independently, developing new components for a nanotechnology course, and dissemination of knowledge through publications and conference presentations and outreach..
**非技术描述**该奖项来自材料研究部凝聚态物理项目,支持耶鲁大学开展一个项目,开发用于拓扑绝缘体纳米结构的新型化学掺杂方法,以缓解该领域当前面临的材料挑战。拓扑绝缘体具有奇异的导电表面态,可用作不产生废热的信息载体。 因此,拓扑绝缘体可以取代当前的铜互连,从而大大减少社会的能源消耗。这项研究将使拓扑绝缘体作为替代互连的实现更接近现实。此外,这些方法可以成功应用于二维层状半导体,以制造稀磁半导体,从而对社会产生更广泛的影响。稀磁半导体在自旋电子学应用中得到了广泛研究。这项工作有助于培训熟练的技术人员,并包含纳米材料新课程开发的要素。此外,该项目还促进了代表性不足的群体的参与。**技术说明**该奖项由耶鲁大学材料研究部凝聚态物理项目授予,用于支持开发新颖的化学方法以磁性掺杂拓扑绝缘体纳米材料的项目杂质,并在拓扑表面态中打开带隙。研究了两种化学方法。第一种方法是在层状拓扑绝缘体的范德华间隙处插入磁性原子、离子和分子。第二种方法利用分子自旋对拓扑绝缘体纳米结构进行表面修饰。这些方法比传统的掺杂方法表现出显着的优势:1)磁性掺杂剂浓度更高,2)磁性掺杂剂不会聚集,3)磁性掺杂剂空间排序为反铁磁性或铁磁性,4)对其他二维材料的广泛适用性分层材料。将制造纳米器件来测量低温下的磁输运以表征掺杂。这项研究的成功成果将建立一个材料平台,在该平台上可以探索基本的凝聚态物理现象,以增进对拓扑表面态带隙、拓扑磁电效应和量子反常霍尔效应的认识。预计该项目中开发的方法可以具有通用性。该研究包括培训本科生独立进行研究、开发纳米技术课程的新组件以及通过出版物和会议演示和外展传播知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Judy Cha其他文献

Judy Cha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Judy Cha', 18)}}的其他基金

Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328907
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328907
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
In situ TEM mechanical molding of intermetallic nanowires
金属间化合物纳米线的原位 TEM 机械成型
  • 批准号:
    2240956
  • 财政年份:
    2022
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
CAREER: Electronic transport and interfacial effects on electrochemical hydrogen evolution reaction for transition metal dichalcogenides
职业:过渡金属二硫属化物电化学析氢反应的电子传输和界面效应
  • 批准号:
    2240944
  • 财政年份:
    2022
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
In situ TEM mechanical molding of intermetallic nanowires
金属间化合物纳米线的原位 TEM 机械成型
  • 批准号:
    2103730
  • 财政年份:
    2021
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
In situ TEM mechanical molding of intermetallic nanowires
金属间化合物纳米线的原位 TEM 机械成型
  • 批准号:
    2103730
  • 财政年份:
    2021
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
NNCI: Cornell NanoScale Science and Technology Facility (CNF)
NNCI:康奈尔大学纳米科学技术设施 (CNF)
  • 批准号:
    2025233
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Cooperative Agreement
CAREER: Electronic transport and interfacial effects on electrochemical hydrogen evolution reaction for transition metal dichalcogenides
职业:过渡金属二硫属化物电化学析氢反应的电子传输和界面效应
  • 批准号:
    1749742
  • 财政年份:
    2018
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
EAGER: BRAIDING: Collaborative Research: Manipulation of Majorana Modes in Topological Crystalline Insulator Nanowires
EAGER:编织:合作研究:拓扑晶体绝缘体纳米线中马约拉纳模式的操纵
  • 批准号:
    1743896
  • 财政年份:
    2017
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
EAGER: BRAIDING: Collaborative Research: Manipulation of Majorana Modes in Topological Crystalline Insulator Nanowires
EAGER:编织:合作研究:拓扑晶体绝缘体纳米线中马约拉纳模式的操纵
  • 批准号:
    1743896
  • 财政年份:
    2017
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant

相似国自然基金

基于风貌保护的广东传统生土建筑墙体耐候机理与增效构造方法研究
  • 批准号:
    52378017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于传统建筑技艺的西南山地木构农宅模块化生成与适地营造方法研究
  • 批准号:
    52308009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
传统村落公共空间的图式语言分析方法及设计应用——以闽江流域为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的广东传统村落视觉景观评估方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the Consequences of Chromosome 3 Arm Aneuploidies in Squamous Cell Carcinoma
阐明鳞状细胞癌中染色体 3 臂非整倍体的后果
  • 批准号:
    10736206
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
Defining the forebrain neurophysiological representation of pain
定义疼痛的前脑神经生理学表征
  • 批准号:
    10592206
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
SAR 2023: From Mechanism to Patient-Centered Care: Research in Acupuncture and Traditional East Asian Medicine
SAR 2023:从机制到以患者为中心的护理:针灸和传统东亚医学研究
  • 批准号:
    10609124
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了