III: Medium: Collaborative Research: Collective Opinion Fraud Detection: Identifying and Integrating Cues from Language, Behavior, and Networks

III:媒介:协作研究:集体意见欺诈检测:识别和整合来自语言、行为和网络的线索

基本信息

  • 批准号:
    1408924
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Given user reviews on Web sites such as Yelp, Amazon, and TripAdvisor, which ones should one trust? Online reviews have become an important resource for public opinion sharing. They influence our decisions over an extremely wide spectrum of daily and professional activities: e.g., where to eat, where to stay, which products to purchase, which doctors to see, which books to read, which universities to attend, and so on. However, the credibility and trustworthiness of online reviews are at stake. It is well known that a large body of reviews is fabricated -- either by owners, competitors, or entities paid by those -- to create false perception on the actual quality of the products and services. What is more, opinion fraud is prevalent; while credit card fraud is as rare as 0.2% or less, it is estimated that 20-30% of the reviews on well-known service sites could be fake. This poses a serious risk to businesses and the public, from investing on a low-quality product to consulting an incompetent doctor for diagnosis and treatment. Like other kinds of fraud, opinion fraud is a serious legal offense. In fact, it is currently being recognized as a serious issue in law enforcement by policymakers. Thus solving this problem is of great importance to businesses and the general public alike. Accurately spotting opinion fraud will enable site owners to provide trustworthy content, maintain the integrity of their service, and protect the online citizens from unfair (or potentially harmful) products and services. Businesses will also benefit from reviews with reliable feedback. Honest businesses will be indirectly rewarded, as it will no longer be easy for unscrupulous businesses to benefit from fake reviews. The research outcomes will thus contribute significantly to the healthy growth of the Internet commerce. Educational activities include incorporating research findings in graduate level courses, educating public on fraudulent behavior and misinformation, and providing publicly available educational materials including lectures and manuscripts.Given the critical issues of opinion fraud in online communities, how can one identify fake reviews and attribute responsible culprits behind them? By conjoining expertise of the PIs over various modalities of deception footprints ranging over language, user behavior, and relational information, this project presents a research program that will result in much needed solutions to this emergent, prevalent, and socially impactful problem. The ultimate goal is to create a unified detection framework via synergistic integration of multiple information sources; from linguistics, user behavior, and network effects, to obtain the best of all worlds. The main idea is to formulate the problem as a relational inference task on composite heterogeneous networks, providing a principled, extensible approach that can blend and reinforce all the above cues towards effective and robust detection of fraud. From a scientific point of view, the research brings together three disciplines: natural language analysis, behavioral modeling, and graph mining. The outcome is a suite of novel, principled, and scalable techniques and models that will enhance our understanding of the creation and dissemination of opinion fraud and misinformation in general at a large scale. The PIs will collaborate with industry partners such as Yelp, Google, and Amazon, directly solicit online fake reviews, and conduct well-designed user studies for testing and validation of their techniques. The project web site (http://www.andrew.cmu.edu/user/lakoglu/PROJECTS/OPINION_FRAUD/) provides additional information and will include open-source software and datasets.
鉴于Yelp,Amazon和TripAdvisor等网站上的用户评论,应该信任哪些?在线评论已成为舆论共享的重要资源。它们在每日和专业活动中都会影响我们的决定:例如,在哪里吃饭,住在哪里,要购买的产品,哪些医生可以看哪些书籍,要读的书籍,要上的大学等等。但是,在线评论的可信度和可信度受到威胁。众所周知,由所有者,竞争对手或那些人支付的实体制造了大量的评论,以对产品和服务的实际质量产生虚假看法。更重要的是,意见欺诈是普遍的。虽然信用卡欺诈范围为0.2%或更少,但据估计,著名服务网站的评论中有20-30%可能是假的。这对企业和公众构成了严重的风险,从投资低质量的产品到咨询无能的医生进行诊断和治疗。像其他类型的欺诈一样,意见欺诈是严重的法律犯罪。实际上,该决策者目前在执法方面被认为是一个严重的问题。因此,解决这个问题对企业和公众都非常重要。准确地发现意见欺诈将使网站所有者能够提供值得信赖的内容,维持其服务的完整性,并保护在线公民免受不公平(或潜在有害的)产品和服务的侵害。企业还将从具有可靠反馈的评论中受益。诚实的企业将受到间接奖励,因为不道德的企业不再容易从虚假评论中受益。因此,研究结果将对互联网贸易的健康增长产生重大贡献。教育活动包括将研究结果纳入研究生级课程,向公众教育欺诈行为和错误信息,并提供公开可用的教育材料,包括讲座和手稿。在线社区中,人们如何识别虚假的评论和属性在他们身后负责罪魁祸首?通过结合PI的专业知识,涉及语言,用户行为和关系信息的各种欺骗足迹的方式,该项目提出了一项研究计划,该计划将为这种新兴,普遍和社会影响的问题提供急需的解决方案。最终目标是通过多个信息源的协同集成来创建一个统一的检测框架;从语言学,用户行为和网络效应中获得所有世界中最好的。主要思想是将问题提出为复合异质网络的关系推理任务,提供了一种有原则的,可扩展的方法,可以将上述所有线索融合在一起,以实现有效且强大的欺诈检测。从科学的角度来看,该研究汇集了三个学科:自然语言分析,行为建模和图形挖掘。结果是一套新颖,有原则和可扩展的技术和模型的套件,可以增强我们对观点欺诈和大规模宣传的创造和传播的理解。 PIS将与Yelp,Google和Amazon等行业合作伙伴合作,直接征集在线伪造评论,并进行精心设计的用户研究以测试和验证其技术。项目网站(http://www.andrew.cmu.edu/user/lakoglu/projects/opinion_fraud/)提供其他信息,并将包括开放式软件和数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Faloutsos其他文献

大規模時系列データからの特徴自動抽出
从大规模时间序列数据中自动提取特征
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松原靖子、櫻井保志;Christos Faloutsos
  • 通讯作者:
    Christos Faloutsos
時系列ビッグデータのための非線形解析とその応用
时间序列大数据的非线性分析及其应用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasuko Matsubara;Yasushi Sakurai;Christos Faloutsos;松原靖子
  • 通讯作者:
    松原靖子
大規模オンライン活動データの特徴自動抽出
大规模在线活动数据自动特征提取
実社会データへの機械学習応用
机器学习在现实世界数据中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasushi Sakurai;Yasuko Matsubara;Christos Faloutsos;櫻井 保志;櫻井 保志
  • 通讯作者:
    櫻井 保志
: Patterns and the SOAR Model
:模式和 SOAR 模型
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Eswaran;Reihaneh Rabbany;Artur W. Dubrawski;Christos Faloutsos
  • 通讯作者:
    Christos Faloutsos

Christos Faloutsos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Faloutsos', 18)}}的其他基金

TWC: Medium: Collaborative: Know Thy Enemy: Data Mining Meets Networks for Understanding Web-Based Malware Dissemination
TWC:媒介:协作:了解你的敌人:数据挖掘与网络结合以了解基于 Web 的恶意软件传播
  • 批准号:
    1314632
  • 财政年份:
    2013
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CGV: Small: Making Sense out of Large Graphs - Bridging HCI with Data Mining
CGV:小:从大图中理解 - 连接 HCI 与数据挖掘
  • 批准号:
    1217559
  • 财政年份:
    2012
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory, Scalable Algorithms and Applications
BIGDATA:中型:DA:协作研究:大张量挖掘:理论、可扩展算法和应用
  • 批准号:
    1247489
  • 财政年份:
    2012
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
III: Small: Influence and Virus Propagation in Large Graphs - Theory and Algorithms
III:小:大图中的影响和病毒传播 - 理论和算法
  • 批准号:
    1017415
  • 财政年份:
    2010
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
The Second Workshop on Large-Scale Data Mining: Theory and Applications
第二届大规模数据挖掘:理论与应用研讨会
  • 批准号:
    1045306
  • 财政年份:
    2010
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
  • 批准号:
    0808661
  • 财政年份:
    2008
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
III-COR: Collaborative Research: Mining Biomedical and Network Data Using Tensors
III-COR:协作研究:使用张量挖掘生物医学和网络数据
  • 批准号:
    0705359
  • 财政年份:
    2007
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NETS-NBD: RIDR: Towards Robust Inter-Domain Routing: Measurements, Models, and Deployable Tools
协作研究:NETS-NBD:RIDR:迈向稳健的域间路由:测量、模型和可部署工具
  • 批准号:
    0721736
  • 财政年份:
    2007
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Finding Patterns and Anomalies in Large Time-Evolving Graphs
在大型时间演化图中查找模式和异常
  • 批准号:
    0534205
  • 财政年份:
    2006
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
ITR Collaborative Research: Indexing, Retrieval, and Use of Large Motion Databases
ITR 协作研究:大型运动数据库的索引、检索和使用
  • 批准号:
    0326322
  • 财政年份:
    2004
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了