III-COR: Collaborative Research: Mining Biomedical and Network Data Using Tensors
III-COR:协作研究:使用张量挖掘生物医学和网络数据
基本信息
- 批准号:0705359
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IIS 0705359, IIS 0705215III-COR: Collaborative Research: Mining Biomedical and Network Data Using Tensors Christos Faloutsos (christos@cs.cmu.edu) CMU Vasileios Megalooikonomou (vasilis@cis.temple.edu) Temple Univ.Given a large collection of functional Magnetic Resonance (fMR) images over time,how can one find patterns and correlations? Similarly, given a never-ending stream of network traffic information, how can one monitor for anomalies, intrusions, and potential failures? The main idea behind this proposal is to treat both problems using the theory of tensors. Despite the seemingly wide differences in the two settings, they both boil down to finding patterns in multidimensional arrays, sparse or dense. Tensors are exactly generalizations of matrices, and correspond roughly to ``DataCubes'' of data mining. Matrix analysis and decompositions are part of the standard toolbox for data mining, providing methods for dimensionality reduction, pattern discovery and``hidden variable'' discovery. Extending these tools to higher dimensionalities is valuable and tensors provide the tools to do this generalization. However, these tools have not yet been put to use in large volume data mining. This is the main contribution of this proposal. The investigators propose (a) to design tensor decomposition algorithms that scale for large datasets,with special attention to sparse datasets, and to never-ending streams of data and (b) to apply them on two driving applications, fMRI data analysis and networkdata analysis. The investigators propose to analyze large volumes of fMRI data performingthe following sub-tasks: cluster voxels with similar behavior over time fora given subject and/or task or across subjects and/or tasks, classify patterns of brain activity, and detect lag correlationsand spatio-temporal patterns among fMRI time sequences. The investigators also propose to perform the following inter-related tasks on multiple GigaBytes of network flow data: anomaly detection, pattern discovery, and compression.Both of these applications are important for medicine, health management,and for computer and national security. Analysis of fMRI data can help understandinghow the brain functions, which parts of the brain collaborate with what other parts, and whether there are variations across subjects and across task-related activities. For the network traffic monitoring setting, fast detection of anomalies is important,to spot malware, port-scanning attempts, and just plain non-malicious failures.The educational goals include incorporating the research findings in advanced graduate courses at CMU (15-826) and at Temple (9664, 9665)and proposing tutorials in leading conferences in databases, data mining and bio-informatics audiences.For further information see the web page: http://knight.cis.temple.edu/~vasilis/research/tensors.html
IIS 0705359,IIS 0705215III-COR:合作研究:使用张量Christos christos faloutsos(Christos@cs.cmu.edu)CMU Vasileios Megalooikonomou(vasilis@cis.temple.temple.-temple.edu comentional timemry timemrance fackional timeprance(FMIANITAL)timemone(FMIANDER),使用张量cmu vasileios timemone(FM),找到模式和相关性?同样,考虑到无休止的网络流量信息流,如何监视异常,入侵和潜在故障?该提案背后的主要思想是使用张量理论来治疗这两个问题。尽管这两种设置似乎存在很大的差异,但它们都归结为在稀疏或致密的多维阵列中找到图案。张量完全是矩阵的概括,并且大致对应于数据挖掘的``数据存储''。 矩阵分析和分解是数据挖掘的标准工具箱的一部分,为降低维度降低,模式发现和“隐藏变量”的发现提供了方法。将这些工具扩展到更高的维度是有价值的,张量提供了进行这种概括的工具。但是,这些工具尚未用于大量数据挖掘。这是该提议的主要贡献。研究人员建议(a)设计张量分解算法,以规模大型数据集扩展,并特别注意稀疏数据集,以及无休止的数据流以及(b)将它们应用于两个驾驶应用程序,fMRI数据分析和网络数据分析。研究人员建议分析大量fMRI数据执行以下子任务:群集体素随着时间的流逝和/或任务和/或任务或跨受试者和/或任务,对大脑活动的模式进行分类,并检测fMRI时间序列之间的滞后相关性和时空模式。调查人员还建议对网络流数据的多个千兆字节执行以下相互关联的任务:异常检测,模式发现和压缩。这些应用程序对医学,健康管理以及计算机和国家安全都很重要。 FMRI数据的分析可以帮助您了解大脑功能,大脑的哪些部分与其他部分合作,以及在受试者之间以及与任务相关的活动之间是否存在差异。 For the network traffic monitoring setting, fast detection of anomalies is important,to spot malware, port-scanning attempts, and just plain non-malicious failures.The educational goals include incorporating the research findings in advanced graduate courses at CMU (15-826) and at Temple (9664, 9665)and proposing tutorials in leading conferences in databases, data mining and bio-informatics audiences.For further information请参阅网页:http://knight.cis.temple.edu/~vasilis/research/tensors.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Faloutsos其他文献
実社会データへの機械学習応用
机器学习在现实世界数据中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yasushi Sakurai;Yasuko Matsubara;Christos Faloutsos;櫻井 保志;櫻井 保志 - 通讯作者:
櫻井 保志
大規模時系列データからの特徴自動抽出
从大规模时间序列数据中自动提取特征
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
松原靖子、櫻井保志;Christos Faloutsos - 通讯作者:
Christos Faloutsos
大規模オンライン活動データの特徴自動抽出
大规模在线活动数据自动特征提取
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
松原靖子;櫻井保志;Christos Faloutsos - 通讯作者:
Christos Faloutsos
時系列ビッグデータのための非線形解析とその応用
时间序列大数据的非线性分析及其应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yasuko Matsubara;Yasushi Sakurai;Christos Faloutsos;松原靖子 - 通讯作者:
松原靖子
イメージの鮮明度と残像の明瞭さの関係
图像清晰度与残像清晰度之间的关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yasuko Matsubara;Yasushi Sakurai;Christos Faloutsos;廣瀬健司・菱谷晋介 - 通讯作者:
廣瀬健司・菱谷晋介
Christos Faloutsos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Faloutsos', 18)}}的其他基金
III: Medium: Collaborative Research: Collective Opinion Fraud Detection: Identifying and Integrating Cues from Language, Behavior, and Networks
III:媒介:协作研究:集体意见欺诈检测:识别和整合来自语言、行为和网络的线索
- 批准号:
1408924 - 财政年份:2014
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Know Thy Enemy: Data Mining Meets Networks for Understanding Web-Based Malware Dissemination
TWC:媒介:协作:了解你的敌人:数据挖掘与网络结合以了解基于 Web 的恶意软件传播
- 批准号:
1314632 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
CGV: Small: Making Sense out of Large Graphs - Bridging HCI with Data Mining
CGV:小:从大图中理解 - 连接 HCI 与数据挖掘
- 批准号:
1217559 - 财政年份:2012
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory, Scalable Algorithms and Applications
BIGDATA:中型:DA:协作研究:大张量挖掘:理论、可扩展算法和应用
- 批准号:
1247489 - 财政年份:2012
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
III: Small: Influence and Virus Propagation in Large Graphs - Theory and Algorithms
III:小:大图中的影响和病毒传播 - 理论和算法
- 批准号:
1017415 - 财政年份:2010
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
The Second Workshop on Large-Scale Data Mining: Theory and Applications
第二届大规模数据挖掘:理论与应用研讨会
- 批准号:
1045306 - 财政年份:2010
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
- 批准号:
0808661 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Collaborative Research: NETS-NBD: RIDR: Towards Robust Inter-Domain Routing: Measurements, Models, and Deployable Tools
协作研究:NETS-NBD:RIDR:迈向稳健的域间路由:测量、模型和可部署工具
- 批准号:
0721736 - 财政年份:2007
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Finding Patterns and Anomalies in Large Time-Evolving Graphs
在大型时间演化图中查找模式和异常
- 批准号:
0534205 - 财政年份:2006
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
ITR Collaborative Research: Indexing, Retrieval, and Use of Large Motion Databases
ITR 协作研究:大型运动数据库的索引、检索和使用
- 批准号:
0326322 - 财政年份:2004
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
相似国自然基金
棉花冷调控基因COR27(GhCOR27)响应低温胁迫的调控机理研究
- 批准号:32260449
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
白菜花粉响应低温胁迫的lncRNA-BrCBF4-COR基因调控通路研究
- 批准号:
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
白桦冷驯化过程中转录因子BpERF98调控COR基因的研究
- 批准号:31870659
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
CMA通过N-CoR/UPR通路对胶质母细胞瘤凋亡的调控作用及其机制研究
- 批准号:81502139
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
冷胁迫诱导柽柳ThCAP基因表达的分子机制研究
- 批准号:31200510
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
III-COR-Small: Collaborative Research: Time Series Subsequence Matching for Content-based Access in Very Large Multimedia Databases
III-COR-Small:协作研究:超大型多媒体数据库中基于内容的访问的时间序列子序列匹配
- 批准号:
0812309 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Collaborative Research III-COR: From a Pile of Documents to a Collection of Information: A Framework for Multi-Dimensional Text Analysis
协作研究III-COR:从一堆文档到信息集合:多维文本分析框架
- 批准号:
0917773 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
III-COR Medium: Collaborative Research: Achieving Compliant Databases
III-COR 媒介:协作研究:实现合规数据库
- 批准号:
0803280 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
III-COR-Small: Bootstrapping Adaptive Personalized Music Search with Game-based Collaborative Tagging
III-COR-Small:通过基于游戏的协作标记引导自适应个性化音乐搜索
- 批准号:
0812314 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
III-COR-Small: Collaborative Research: Time Series Subsequence Matching for Content-based Access in Very Large Multimedia Databases
III-COR-Small:协作研究:超大型多媒体数据库中基于内容的访问的时间序列子序列匹配
- 批准号:
0812601 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant