Multiplexing Techniques for Scalable Wireless Interconnects at sub-THz Frequencies: Circuits-EM-Communication Codesign Approach

亚太赫兹频率可扩展无线互连的复用技术:电路-电磁-通信协同设计方法

基本信息

  • 批准号:
    1408490
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Multiplexing Techniques for Scalable Wireless Interconnects at THz FrequenciesECCS-1408490PI: Kushik Sengupta, Princeton University This proposal aims to investigate and develop spatially multiplexed architectures for wireless interconnects at sub-THz frequencies as scalable, energy-efficient solution towards one terabit per second (1 Tb/s). As we enter the era of terra-scale computing, massive amounts of data crunching by these processors will require inordinately large amount of bandwidth, not currently served by either electrical or optical interconnect solutions. Current methods of scaling of electrical interconnects to higher data rates are either limited by the available bandwidth density (Gb/s/mm2), energy cost, the circuit complexities in driving high-speed data through the long and lossy physical traces, or by the maximum number of parallel physical traces possible to accommodate in a constrained form factor. Wireless interconnects near THz frequencies are promising , but wireless data rates of 10Gb/s and the high energy/bit requirement, falls way short of meeting the bandwidth requirements for future off-chip interconnects. In this proposal, we aim to investigate techniques where the capacity of the channel can be increased many-fold using communication theoretic spatial-domain multiplexing techniques. Under the same total power constraint, such architectures have orders of magnitude more channel capacity, thereby providing a scalable solution towards wireless Tb/s interconnects. A key component in this proposal is to combine seamlessly, high-frequency circuits and systems and antennas with communication-theoretic techniques to increase capacity and data-rates by orders of magnitude, not otherwise possible in a single directional partitioned approach. Metal-based interconnect traces on printed circuit boards(PCB) serve as the most common method of chip-chip interconnects. However, increasing need of computational power to crunch more and more data in specialized server systems, high-performance computing or even portable devices, requires that communication data-rate from the processor to the peripherals be scaled proportionately. In most cases, the number of input-output pins is limited by the form factor, which puts a bottleneck on communication capacity among all the processors. In this proposal, we investigate techniques to use very high-frequency electromagnetic waves located in the Terahertz portion of the spectrum (between microwaves and infra-red) to establish seamless wireless communication links among the chipsets. Moving to such high frequencies enables us to exploit orders of magnitude higher bandwidth needed for sustaining such high data rates. Additionally, we investigate techniques to increase the communication links capacity by another order through spatial multiplexing techniques in a short-range communication setting. The success of this project is envisioned to bring new forms of smart interconnect solutions for a host of various applications from high-performance computing to internet data centers. The results of this research effort are also expected to have major impact in advancing the field of THz electronics benefitting diverse applications such as imaging and sensing. In a broader vision, this will have major impacts in radically new technologies in communication and computation, which not only makes us a more connected society, but also fuel research in other areas of applied science. This research is also expected to train both graduate and undergraduate students in multi-disciplinary fields, which are vitally important for solving challenging research problems for the future.
可扩展无线互连的多路复用技术在thz pomencencieseccs-1408490pi:普林斯顿大学的Kushik Sengupta,该建议旨在调查和开发无线互连的无线互连架构,以作为可伸缩的,能源效能的溶液,朝着一个ter-ter-ter-ter-thz频率求解,朝着一个terabit/s s s terabit/ss s n tebiT/s s n t t terabit/s。当我们进入Terra级计算的时代时,这些处理器大量的数据处理将需要大量的带宽,目前不受电气或光学互连溶液的服务。电流互连到较高数据速率的当前方法要么受到可用的带宽密度(GB/S/MM2),能量成本,通过长而有损的物理痕迹驱动高速数据的电路复杂性,要​​么受到最大的平行物理痕量数量,以适应​​约束形式。无线互连在THZ频率附近是有希望的,但是无线数据速率为10GB/s,高能量/钻头需求,不足以满足未来芯片外互连的带宽要求。在此提案中,我们旨在调查使用通信理论空间塑料多路复用技术可以增加通道能力的技术。在相同的总功率约束下,此类架构的通道容量增加了数量级,从而为无线TB/S互连提供了可扩展的解决方案。该提案中的一个关键组成部分是将无缝的高频电路和系统和天线与通信理论技术相结合,以通过数量级来增加容量和数据速率,以其他方式在单个方向分配方法中不可能。印刷电路板(PCB)上的基于金属的互连轨迹是芯片芯片互连的最常见方法。但是,增加计算能力以在专用服务器系统,高性能计算甚至便携式设备中处理越来越多的数据,这要求将通信数据速率从处理器到外围设备进行成比例缩放。在大多数情况下,输入输出引脚的数量受外形元素的限制,这使所有处理器之间的通信能力瓶颈瓶颈。在此提案中,我们研究了使用位于光谱的Terahertz部分(微波和红外线之间)的高频电磁波的技术,以在芯片组之间建立无缝的无线通信链路。转移到如此高的频率使我们能够利用维持如此高数据速率所需的数量级的数量级。此外,我们调查了通过短期通信设置中的空间多路复用技术通过另一个订单来提高通信链路容量的技术。设想该项目的成功是为从高性能计算到互联网数据中心的许多应用程序带来新形式的智能互连解决方案。预计这项研究工作的结果还将在推动THZ电子领域的领域产生重大影响,从而使成像和传感等多样化的应用受益。在更广泛的愿景中,这将对沟通和计算的根本新技术产生重大影响,这不仅使我们成为一个更加联系的社会,而且还可以在应用科学的其他领域进行研究。这项研究还预计将在多学科领域培训研究生和本科生,这对于解决未来具有挑战性的研究问题至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaushik Sengupta其他文献

Role Conflict, Role Balance and Affect: A Model of Well-being of the Working Student
角色冲突、角色平衡与影响:在职学生的幸福感模型
Analysis of mechanical property of electrically assisted friction stir welding to enhance the efficiency of joints
分析电辅助搅拌摩擦焊的机械性能以提高接头效率
  • DOI:
    10.1016/j.matpr.2020.06.321
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaushik Sengupta;Dilip Kr Singh;A. K. Mondal;D. Bose;B. Ghosh
  • 通讯作者:
    B. Ghosh
Doing science together: gaining momentum from long-term explorative university-industry research programs.
一起做科学:从长期探索性的大学-工业研究项目中获得动力。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Bastian Rake;Kaushik Sengupta;Lena Lewin;Anna Sandström;M. McKelvey
  • 通讯作者:
    M. McKelvey
Dentin-derived alveolar bone graft for alveolar augmentation: A systematic review
用于牙槽增量的牙本质源性牙槽骨移植:系统评价
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dedy Agoes Mahendra;Kavanila Bilbalqish;Alexander Patera Nugraha;A. Cahyanto;Kaushik Sengupta;Ankur Razdan;Kamal Hanna;N. Hariyani
  • 通讯作者:
    N. Hariyani
mmWAVE and Signal Processing
毫米波和信号处理
  • DOI:
    10.1109/fnwf58287.2023.10520461
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim Lee;Ramesh Gupta;H. Krishnaswamy;Paolo Gargini;Earl McCune;Harrison Chang;Alberto Valdes;Kamal Samantha;Kaushik Sengupta;Masood Ur;Imran Mehdi;Anding Zhu
  • 通讯作者:
    Anding Zhu

Kaushik Sengupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaushik Sengupta', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
  • 批准号:
    2211617
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RINGS: Resilient mmWave Networks via Distributed In-Surface Computing (mmRISC)
RINGS:通过分布式表面计算 (mmRISC) 的弹性毫米波网络
  • 批准号:
    2148271
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
  • 批准号:
    1711067
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Portable, fluorescence-based bio-molecular sensor on CMOS chip with integrated nano-optics for massively multiplexed assays
CMOS 芯片上的便携式荧光生物分子传感器,具有集成纳米光学器件,适用于大规模多重分析
  • 批准号:
    1610761
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Integrated THz Spectroscopy exploiting On-chip Scattering and Device Nonlinearity
利用片上散射和器件非线性的集成太赫兹光谱
  • 批准号:
    1509560
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMT采样增强的符号执行可扩展性关键技术研究
  • 批准号:
    62372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于复杂网络和人工智能技术的可扩展智能决策模型研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于复杂网络和人工智能技术的可扩展智能决策模型研究
  • 批准号:
    62206278
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
  • 批准号:
    10665493
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Data Resource and Administrative Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes Consortium
精神科和神经发育障碍风险基因联盟的可扩展和系统神经生物学数据资源和行政协调中心
  • 批准号:
    10642251
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
  • 批准号:
    10744937
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了