Portable, fluorescence-based bio-molecular sensor on CMOS chip with integrated nano-optics for massively multiplexed assays

CMOS 芯片上的便携式荧光生物分子传感器,具有集成纳米光学器件,适用于大规模多重分析

基本信息

  • 批准号:
    1610761
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Molecular diagnostics is one of the growing areas of medical diagnostics and aims to assess a person's health by detecting and measuring specific genetic sequences or proteins. Affinity-based sensing with fluorescence-based labels remains one of the most prevalent form of sensing of bio-molecules and while they are routinely used in hospitals, reference labs, and blood banks to screen for infectious diseases, current optical-based sensing technology is still complex consisting of an assembly of electronic, optical and mechanical components including lenses, objectives, collimators, multilayer thin film filters, monchrometers, photo-multiplier tubes, fiber optics, precision mechanical scanners etc., making the system large, bulky, expensive and non-portable. On the other hand, Complementary-metal-oxide-semiconductor (CMOS) technology, provides an unparalleled platform for integration of extremely complex systems, with high yield in a cost-efficient manner. The goal of the proposal is to co-opt CMOS technology and combine with new methods to integrate optical elements on the chip to realize portable, chip-scale, fluorescence-based biomolecular sensing technology. Miniaturizing an entire fluorescence sensing system from the biochemical platform to the sensor and scanner on one chip with a low-cost, optical excitation source can potentially open up completely new methodologies of in-vitro and in-vivo sensing and imaging. The ability to simultaneously sense multiple genetic as well as protein biomarkers in a rapid and multiplexed detection platform can also drastically improve the statistics of detection, critically important for diagnostics. The crosscut approach towards this project will engage and train both graduate and undergraduate students across multiple disciplines. The PI will also engage high-school seniors from local schools and broadly disseminate the knowledge through his undergraduate and graduate courses and through publications, seminars and workshops.The detection methodology for an affinity-based bio-sensor platform relies on selective target biomolecules by capturing probes and the chemistry is transduced label-free using methods such as impedance-spectroscopy, electro-analysis, Raman scattering or with magnetic, dielectric or optical labels. While detecting changes in the optical fields are mature in CMOS-based image sensors, in absence of high-performance integrated optical components, miniaturization of a fluorescence sensing system in CMOS has relied on time-resolved techniques with synchronized sources or externally grown optical filters and/or collimators which can add complexity and cost to the system. The goal of this proposal is to investigate methods by which optical field manipulation can be achieved in standard CMOS technology exploiting sub-wavelength interaction of metal-photonic nanostructures with incident optical fields in the visible range. Specifically, this work proposes design of electronic-nanophotonic architectures, signal-processing techniques and bio-interfaces on-chip with integrated 3D nanophotonic elements for massively multiplexed, fluorescence-based bio-assays. These structures are capable of excitation light suppression across a wide range of incidence angles and allow the fluorescence signal to pass, and get detected and processed over a multitude of sensor sites to enable high-density functionalized optical biosensor chips. Integrated nanoplasmonic structures in the visible range in CMOS with embedded electronics can lead to complex and miniaturized optical systems-on-chip for new applications in sensing and imaging.
分子诊断是医学诊断不断发展的领域之一,旨在通过检测和测量特定的基因序列或蛋白质来评估人的健康状况。基于荧光标签的亲和感测仍然是最普遍的生物分子感测形式之一,虽然它们通常在医院、参考实验室和血库中用于筛查传染病,但当前基于光学的感测技术仍然很复杂,由电子、光学和机械部件组成,包括透镜、物镜、准直器、多层薄膜滤光片、单色仪、光电倍增管、光纤、精密机械扫描仪等,使系统变得很大,体积大、价格昂贵且不便于携带。另一方面,互补金属氧化物半导体(CMOS)技术为极其复杂的系统集成提供了无与伦比的平台,并以经济高效的方式实现高产量。该提案的目标是采用CMOS技术并结合新方法将光学元件集成在芯片上,以实现便携式、芯片级、基于荧光的生物分子传感技术。使用低成本光学激发源将整个荧光传感系统(从生化平台到传感器和扫描仪)小型化在一个芯片上,有可能开辟全新的体外和体内传感和成像方法。在快速多重检测平台中同时检测多种遗传和蛋白质生物标志物的能力也可以极大地改善检测统计数据,这对于诊断至关重要。该项目的横切方法将吸引和培训跨多个学科的研究生和本科生。 PI 还将吸引当地学校的高中生,并通过他的本科生和研究生课程以及出版物、研讨会和讲习班广泛传播知识。基于亲和力的生物传感器平台的检测方法依赖于选择性目标生物分子,通过捕获使用阻抗谱、电分析、拉曼散射等方法或使用磁性、介电或光学标记进行无标记的探针和化学物质的转导。虽然基于 CMOS 的图像传感器检测光场变化的技术已经成熟,但在缺乏高性能集成光学元件的情况下,CMOS 中荧光传感系统的小型化一直依赖于具有同步源或外部生长的光学滤波器的时间分辨技术和/或准直器,这会增加系统的复杂性和成本。该提案的目标是研究在标准 CMOS 技术中利用金属光子纳米结构与可见光范围内的入射光场的亚波长相互作用来实现光场操纵的方法。具体来说,这项工作提出了电子纳米光子架构、信号处理技术和片上生物接口的设计,其中集成了 3D 纳米光子元件,用于大规模多重、基于荧光的生物测定。这些结构能够在较宽的入射角范围内抑制激发光,并允许荧光信号通过,并在多个传感器位点上被检测和处理,从而实现高密度功能化光学生物传感器芯片。 CMOS 中可见光范围内的集成纳米等离子体结构与嵌入式电子器件可以产生复杂且小型化的片上光学系统,用于传感和成像的新应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaushik Sengupta其他文献

Role Conflict, Role Balance and Affect: A Model of Well-being of the Working Student
角色冲突、角色平衡与影响:在职学生的幸福感模型
Analysis of mechanical property of electrically assisted friction stir welding to enhance the efficiency of joints
分析电辅助搅拌摩擦焊的机械性能以提高接头效率
  • DOI:
    10.1016/j.matpr.2020.06.321
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaushik Sengupta;Dilip Kr Singh;A. K. Mondal;D. Bose;B. Ghosh
  • 通讯作者:
    B. Ghosh
Doing science together: gaining momentum from long-term explorative university-industry research programs.
一起做科学:从长期探索性的大学-工业研究项目中获得动力。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Bastian Rake;Kaushik Sengupta;Lena Lewin;Anna Sandström;M. McKelvey
  • 通讯作者:
    M. McKelvey
Dentin-derived alveolar bone graft for alveolar augmentation: A systematic review
用于牙槽增量的牙本质源性牙槽骨移植:系统评价
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dedy Agoes Mahendra;Kavanila Bilbalqish;Alexander Patera Nugraha;A. Cahyanto;Kaushik Sengupta;Ankur Razdan;Kamal Hanna;N. Hariyani
  • 通讯作者:
    N. Hariyani
mmWAVE and Signal Processing
毫米波和信号处理
  • DOI:
    10.1109/fnwf58287.2023.10520461
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim Lee;Ramesh Gupta;H. Krishnaswamy;Paolo Gargini;Earl McCune;Harrison Chang;Alberto Valdes;Kamal Samantha;Kaushik Sengupta;Masood Ur;Imran Mehdi;Anding Zhu
  • 通讯作者:
    Anding Zhu

Kaushik Sengupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaushik Sengupta', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
  • 批准号:
    2211617
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
RINGS: Resilient mmWave Networks via Distributed In-Surface Computing (mmRISC)
RINGS:通过分布式表面计算 (mmRISC) 的弹性毫米波网络
  • 批准号:
    2148271
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
  • 批准号:
    1711067
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Integrated THz Spectroscopy exploiting On-chip Scattering and Device Nonlinearity
利用片上散射和器件非线性的集成太赫兹光谱
  • 批准号:
    1509560
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Multiplexing Techniques for Scalable Wireless Interconnects at sub-THz Frequencies: Circuits-EM-Communication Codesign Approach
亚太赫兹频率可扩展无线互连的复用技术:电路-电磁-通信协同设计方法
  • 批准号:
    1408490
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
  • 批准号:
    62305229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“三明治”构型的延迟荧光材料的设计、合成及其应用研究
  • 批准号:
    52303244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于荧光薄膜的微纳集成器件表面温度场高温敏实时成像
  • 批准号:
    62375255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多足DNA walker的三元光子晶体荧光传感阵列高通量检测多种食源性致病菌
  • 批准号:
    82373633
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于光学捕获及上转换荧光的光控纳米医疗机器人研究
  • 批准号:
    52373287
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Biosensors based on Mining Bacterial Transcription Factors
基于挖掘细菌转录因子的新型生物传感器
  • 批准号:
    10611298
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
Validation of Portable XRF for In Vivo Measurement of Heavy Metal Exposures
便携式 XRF 体内重金属暴露测量的验证
  • 批准号:
    9057038
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
Clinical evaluation of surface-plasmon resonance and nanoparticle-based fluorescent detection of serum biomarkers
表面等离子共振和基于纳米粒子的血清生物标志物荧光检测的临床评价
  • 批准号:
    270225
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Operating Grants
Portable X-Ray Fluorescence Spectrometry: A New Tool for Provenance-Based Research in Archaeology
便携式 X 射线荧光光谱仪:考古学来源研究的新工具
  • 批准号:
    0405042
  • 财政年份:
    2004
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Combined use of laboratory-based and portable infrared and x-ray fluorescence spectroscopy approaches for the spatial-vertical characterization of samples of selected soil groups
结合使用实验室和便携式红外和 X 射线荧光光谱方法对选定土壤组样品进行空间垂直表征
  • 批准号:
    459985119
  • 财政年份:
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了