FRG: Collaborative Research: Hodge Theory, Moduli, and Representation Theory
FRG:协作研究:霍奇理论、模数和表示理论
基本信息
- 批准号:1361159
- 负责人:
- 金额:$ 46.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will develop Hodge theory and apply it to problems in algebraic geometry, number theory and representation theory. The researchers intend to focus on four related topics: (1) Mumford-Tate (MT) domains, (2) moduli spaces, (3) algebraic cycles and the Hodge conjecture, and (4) mixed Hodge modules. (1) MT domains are classifying spaces of Hodge structures, and, roughly speaking, the boundary components of Mumford-Tate domains parametrize degenerations of Hodge structures. The PIs intend to advance number theory, representation theory and algebraic geometry by studying Mumford-Tate domains and their boundary components. For example, the PIs plan to extend work of Carayol, which seeks to associate Galois representations to automorphic representations whose archimedian component is a degenerate limit of discrete series. (2) The second topic concerns the realization of moduli spaces of geometric objects as quotients of discrete groups. An example of such a realization is the moduli space of non-hyperelliptic genus 3 curves, which can be realized as a ball quotient, where the 6 dimensional ball in question sits in the MT domain of K3 surfaces. However, there are not many examples of this type known. The PIs intend to look for more. (3) The third topic involves the approach to the Hodge conjecture via normal functions and their singularities due to Green and Griffiths. The PIs will develop this approach in several directions. For example, they will study the archimedean height function associated to a normal function, and they intend to study the non-reductive MT groups associated to normal functions. (4) Finally, the PIs will develop a flexible theory of complex variations of mixed Hodge modules and apply it to questions arising in representation theory. In particular, they would like to understand the structure of conformal blocks viewed as complex mixed Hodge modules on the moduli spaces of stable curves.Hodge theory is a central area of algebraic geometry with roots in the the classical (19th century) theory of special functions and period integrals. From a modern point of view, the goal of Hodge theory is to relate topological invariants of algebraic varieties to arithmetic and analytic invariants. The central notion is that of a Hodge structure on the cohomology groups of an algebraic variety. While the cohomology groups are purely topological, depending only on the shape of variety, the Hodge structure is a much more sensitive invariant. Consequently, the Hodge structure carries a great deal of important algebro-geometric and number-theoretical information. The most famous unsolved problem in algebraic geometry is the Hodge conjecture, a question about the relationship between the Hodge structure of the cohomology groups of a variety and the existence of certain subvarieties. This focus on the relationship between topological objects and finer analytic invariants is typical of Hodge theory as a whole, and it is the main motivation for the research supported by this FRG. This research will consequently impact several areas of mathematics including number theory, algebraic geometry and representation theory. Owing to the number of techniques involved, the PIs have a diverse set of skills and points of view. An important component of the FRG will be devoted to conferences, which will exchange ideas between the PIs and train postdoctoral fellows and graduate students in a wide range of topics having to do with Hodge theory.
该项目将发展霍奇理论并将其应用于代数几何、数论和表示论问题。 研究人员打算重点关注四个相关主题:(1)Mumford-Tate(MT)域,(2)模空间,(3)代数圈和霍奇猜想,以及(4)混合霍奇模。 (1) MT域是Hodge结构的分类空间,粗略地说,Mumford-Tate域的边界分量参数化了Hodge结构的退化。 PI 打算通过研究 Mumford-Tate 域及其边界分量来推进数论、表示论和代数几何。 例如,PI 计划扩展 Carayol 的工作,该工作试图将伽罗瓦表示与自同构表示联系起来,其阿基米德分量是离散级数的简并极限。 (2) 第二个主题涉及将几何对象的模空间实现为离散群的商。 这种实现的一个例子是非超椭圆 3 格曲线的模空间,它可以实现为球商,其中所讨论的 6 维球位于 K3 曲面的 MT 域中。 然而,已知的这种类型的例子并不多。 PI 打算寻找更多。 (3) 第三个主题涉及通过格林和格里菲斯的正规函数及其奇点来逼近霍奇猜想。 PI 将从多个方向发展这种方法。 例如,他们将研究与正常函数相关的阿基米德高度函数,并且他们打算研究与正常函数相关的非还原 MT 群。 (4) 最后,PI 将开发一种灵活的混合 Hodge 模复杂变体理论,并将其应用于表示论中出现的问题。 特别是,他们希望了解共形块的结构,该结构被视为稳定曲线模空间上的复杂混合 Hodge 模。Hodge 理论是代数几何的中心领域,根源于经典(19 世纪)特殊函数理论和周期积分。 从现代的角度来看,霍奇理论的目标是将代数簇的拓扑不变量与算术和解析不变量联系起来。 中心概念是代数簇的上同调群上的 Hodge 结构。 虽然上同调群是纯粹的拓扑,仅取决于簇的形状,但霍奇结构是一个更加敏感的不变量。因此,霍奇结构携带了大量重要的代数几何和数论信息。 代数几何中最著名的未解决问题是霍奇猜想,这是一个关于簇的上同调群的霍奇结构与某些子簇的存在性之间关系的问题。 这种对拓扑对象和更精细的解析不变量之间关系的关注是整个 Hodge 理论的典型,也是该 FRG 支持的研究的主要动机。 因此,这项研究将影响数学的几个领域,包括数论、代数几何和表示论。 由于涉及的技术数量众多,PI 具有不同的技能和观点。 FRG 的一个重要组成部分将致力于会议,会议将在 PI 之间交流思想,并就与霍奇理论相关的广泛主题培训博士后研究员和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Brosnan其他文献
Automorphisms and deformations of regular semisimple Hessenberg varieties
正则半单Hessenberg簇的自同构和变形
- DOI:
- 发表时间:
2024-05-28 - 期刊:
- 影响因子:0
- 作者:
Patrick Brosnan;Laura Escobar;Jaehyun Hong;Donggun Lee;Eunjeong Lee;Anton Mellit;Eric Sommers - 通讯作者:
Eric Sommers
Automorphisms and deformations of regular semisimple Hessenberg varieties
正则半单Hessenberg簇的自同构和变形
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Patrick Brosnan;Laura Escobar;Jaehyun Hong;Donggun Lee;Eunjeong Lee;Anton Mellit;Eric Sommers - 通讯作者:
Eric Sommers
Patrick Brosnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Brosnan', 18)}}的其他基金
Hodge theoretic and algebraic approaches to the theory of motives
动机理论的霍奇理论和代数方法
- 批准号:
1103269 - 财政年份:2011
- 资助金额:
$ 46.4万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Continuing Grant