Topics in arithmetic geometry
算术几何主题
基本信息
- 批准号:1404369
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project in a subfield of mathematics known as arithmetic geometry. Many of the questions in the project are motivated by the philosophy that algebraic information can be obtained by geometric methods. Solution to the problems under study in this project will have substantial impact on research in cryptography, theoretical physics, and quantum computing.The investigator will study arithmetical intersection numbers of special cycle on Shimura varieties and their relations to the special values of automorphic of L-series. This work will have applications to the Birch and Swinnerton-Dyer conjecture on abelian varieties and the Beilinson--Bloch conjecture on algebraic cycles.
这是一个数学子场的项目,称为算术几何。 该项目中的许多问题都是由可以通过几何方法获得代数信息的哲学的。 解决该项目中研究的问题的解决方案将对密码学,理论物理学和量子计算的研究产生重大影响。研究者将研究Shimura品种特殊周期的算术交集及其与L系列自动型自动形态特殊价值的关系。这项工作将在阿贝尔(Abelian)品种和贝林森(Beilinson)的桦木和swinnerton-dyer猜想中应用于代数周期。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the averaged Colmez conjecture
关于平均科尔梅兹猜想
- DOI:10.4007/annals.2018.187.2.4
- 发表时间:2018
- 期刊:
- 影响因子:4.9
- 作者:Yuan, Xinyi;Zhang, Shou-Wu
- 通讯作者:Zhang, Shou-Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shou-wu Zhang其他文献
Heights and reductions of semi-stable varieties
- DOI:
- 发表时间:
1996-12 - 期刊:
- 影响因子:1.8
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Equidistribution of CM-points on quaternion Shimura varieties
- DOI:
10.1155/imrn.2005.3657 - 发表时间:
2005 - 期刊:
- 影响因子:1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Admissible pairing on a curve
- DOI:
10.1007/bf01232429 - 发表时间:
1993-12 - 期刊:
- 影响因子:3.1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Gross–Schoen cycles and dualising sheaves
- DOI:
10.1007/s00222-009-0209-3 - 发表时间:
2008-12 - 期刊:
- 影响因子:3.1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Linear forms, algebraic cycles, and derivatives of L-series
- DOI:
10.1007/s11425-019-1589-7 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Shou-wu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shou-wu Zhang', 18)}}的其他基金
Intersection Theory and Height Pairings in Arithmetic Geometry
算术几何中的交集理论和高度配对
- 批准号:
2101787 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
- 批准号:
1700883 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1415502 - 财政年份:2013
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1065839 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
- 批准号:
0970100 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
- 批准号:
0700322 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Research / FRG: Arakelov Theory and Modular Forms
合作研究/FRG:阿拉克洛夫理论和模块化形式
- 批准号:
0354436 - 财政年份:2004
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Topics in Arithmetic Algebraic Geometry
算术代数几何专题
- 批准号:
0201691 - 财政年份:2002
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
相似国自然基金
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
自仿集的算术和及一类自仿测度的矩阵表示
- 批准号:12301110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Algebraic and arithmetic dynamics, Diophantine Geometry, and related topics
代数和算术动力学、丢番图几何及相关主题
- 批准号:
20K14300 - 财政年份:2020
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arithmetic Geometry: Topics in Iwasawa Theory
算术几何:岩泽理论专题
- 批准号:
1801328 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
- 批准号:
1700883 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant