Analysis, Spectra, and Number Theory

分析、谱和数论

基本信息

  • 批准号:
    1446181
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-11-01 至 2015-10-31
  • 项目状态:
    已结题

项目摘要

The grant will support a conference "Analysis, Spectra and Number theory", to be held to be held at Princeton University and the Institute for Advanced Study, December 15 - 19, 2014. There will be approximately 20 speakers and an anticipated 200 participants. The conference will focus on number theory, with emphasis on its many relationships with analysis and spectral theory. Both (Fourier) analysis and spectral theory have their origins in understanding oscillating systems, interpreted broadly. It is very surprising, then, that they have been found to play a basic role in number theory. In his 1859 study of primes, Riemann observed that the number of primes up to a given integer could be expressed simply as a sum of oscillating components. It was later observed that that the "frequencies" occurring in Riemann's analysis show many regularities, and behave as if they were the eigenvalues of a large unitary matrix - i.e., an abstraction of the frequency spectrum of a drum. A further link was the discovery, beginning in the work of Maass and Selberg, of highly symmetric geometries (locally symmetric spaces) whose frequency spectrum appears to control many problems in number theory. These themes have expanded in many directions since, encompassing the field of analytic number theory as well as much of automorphic forms. The conference will examine the latest developments in these areas.Topics to be highlighted include arithmetic quantum chaos, analysis of families of L-functions, arithmetic statistics, and connections with ergodic theory. These areas have seen a flurry of activity in recent years, including: the resolution by Lindenstrauss of quantum unique ergodicity for arithmetic surfaces; spectacular breakthroughs by Bhargava and his colleagues concerning the statistics of number fields and elliptic curves; detailed models and predictions for the zero and value distribution of L-functions that were inspired via connections with random matrix theory; construction and the analysis of highly efficient expander graphs; the development of additive combinatorics based on the work of Green and Tao. The conference will include a problem session to suggest future directions for the field. The conference website can be found at https://sites.google.com/site/asnt2014/.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shou-wu Zhang其他文献

Heights and reductions of semi-stable varieties
  • DOI:
  • 发表时间:
    1996-12
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Equidistribution of CM-points on quaternion Shimura varieties
Admissible pairing on a curve
  • DOI:
    10.1007/bf01232429
  • 发表时间:
    1993-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Linear forms, algebraic cycles, and derivatives of L-series
  • DOI:
    10.1007/s11425-019-1589-7
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Gross–Schoen cycles and dualising sheaves
  • DOI:
    10.1007/s00222-009-0209-3
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang

Shou-wu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shou-wu Zhang', 18)}}的其他基金

Intersection Theory and Height Pairings in Arithmetic Geometry
算术几何中的交集理论和高度配对
  • 批准号:
    2101787
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
  • 批准号:
    1700883
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Topics in arithmetic geometry
算术几何主题
  • 批准号:
    1404369
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1415502
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1065839
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
  • 批准号:
    0970100
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
  • 批准号:
    0700322
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
L-Functions and Automorphic Forms
L 函数和自守形式
  • 批准号:
    0638902
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research / FRG: Arakelov Theory and Modular Forms
合作研究/FRG:阿拉克洛夫理论和模块化形式
  • 批准号:
    0354436
  • 财政年份:
    2004
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Topics in Arithmetic Algebraic Geometry
算术代数几何专题
  • 批准号:
    0201691
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多光谱复用的高温数字图像相关环境热误差修正方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
艺术品高光谱成像数字典藏与光谱颜色再现研究
  • 批准号:
    62275025
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于自参考数字校正的自由运行双光梳光谱测量方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
超声场胁迫下猪肉糜凝胶过程中蛋白质构象变化的动力学规律及光谱成像数字化表达研究
  • 批准号:
    32272406
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向农作物全视角测量的自适应条纹投影三维数字化方法研究
  • 批准号:
    61905190
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the Role of Somatic Mutations in Neurofibromatosis Brain
研究体细胞突变在神经纤维瘤病脑中的作用
  • 批准号:
    10722624
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Detection and Characterization of Somatic Mutations in Human Tissue Utilizing Duplex-Consensus Sequencing
利用双重一致性测序检测和表征人体组织中的体细胞突变
  • 批准号:
    10662935
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Computational evaluation of the causal role of somatic mutations in human aging
体细胞突变在人类衰老中因果作用的计算评估
  • 批准号:
    10369167
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
Computational evaluation of the causal role of somatic mutations in human aging
体细胞突变在人类衰老中因果作用的计算评估
  • 批准号:
    10552051
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
Computational evaluation of the causal role of somatic mutations in human aging
体细胞突变在人类衰老中因果作用的计算评估
  • 批准号:
    10380149
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了