FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
基本信息
- 批准号:1360733
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Main Conjectures of Iwasawa theory which have been studied up to now relate the first Chern classes of Iwasawa modules and Selmer complexes to p-adic L-series. The object of this FRG project is to generalize this theory to higher Chern classes. One component of this generalization concerns how to define higher Chern classes in a way that facilitates studying them by L-series. This will be done by extending to the context of Iwasawa theory the adelic methods of Parshin and Beilinson. Another component of the generalization has to do with connecting higher Chern class invariants to L-series. To do this, one needs enough structure in the arithmetic problem to see into its higher codimension features using L-series. Three particular cases will be considered are (i) Greenberg's conjecture over totally real fields, (ii) Iwasawa theory for imaginary quadratic fields at split primes, and (iii) the function field case. Concerning (i), Greenberg has conjectured that the natural Iwasawa modules have trivial support in codimension one; the PIs will study their codimension two support using L-series. Concerning (ii), work of Rubin, and of Kings and Johnson-Leung, suggests that one should study second Chern classes via symbols in K_2 groups associated to pairs of p-adic L-series. Concerning (iii), the PIs will study the images under Chern class maps of classes defined by Witte in the function field case inside the higher relative K-groups of Iwasawa algebras. One further component of this project has to do with generalizing to higher Chern classes the reduction techniques used in proving first Chern class Main Conjectures. This involves generalizing to Iwasawa algebras the theory of tilting complexes and derived equivalences which is used in group representation theory and in studying Fourier-Mukai functors.This proposal deals with fundamental questions about the groups of symmetries of algebraic equations. In the 1950's, Iwasawa began a new approach to the study of such equations by considering their behavior in infinite families. Iwasawa showed that many such families have well defined asymptotic behavior. This led to fundamental conjectures concerning the numerical growth rate of the symmetry groups arising from such families. The proof of such "Main Conjectures" has been one of the central goals of abstract algebra over the last 50 years. This proposal has to do with the refinements of these conjectures which deal with more precise measures of rates of growth. Concerning broad impacts, work on algebraic questions of this kind has led to the development of technology essential to society, such as the improved compression and secure transmission of data.
现在已经研究的岩泽理论的主要猜想将iwasawa模块和Selmer Complexse的最初的Chern类别与P-Adic L系列有关。该FRG项目的目的是将该理论推广到更高的Chern类。这种概括的一个组成部分涉及如何以促进L系列研究它们的方式定义更高的Chern类。这将通过扩展到岩泽理论的上下文来完成。概括的另一个组成部分与将较高的Chern类不变性连接到L系列有关。 为此,在算术问题中需要足够的结构,才能使用L系列介绍其更高的consimension特征。将考虑三种特殊情况是(i)格林伯格对完全真实的领域的猜想,(ii)在分裂素数中对假想二次领域的伊瓦萨岛理论,以及(iii)功能场案例。 关于(i),格林伯格(Greenberg)猜想天然的伊瓦苏瓦模块在编辑中具有微不足道的支持。 PI将使用L系列研究他们的编码两个支持。关于(ii),鲁宾的工作以及国王和约翰逊 - 皇帝的工作,表明应该通过与P-Adic L系列成对相关的K_2组中的符号研究第二个Chern类。 关于(iii),PIS将研究iwasawa代数的较高相对K群中Witte定义的类别的Chern类图像下的图像。 该项目的另一个组成部分与对更高的Chern类概述有关的还原技术证明了Chern Class主要猜想。这涉及将倾斜复合物和得出的等价理论推广到小组表示理论和研究傅立叶穆凯函数时。该建议涉及有关代数方程对称性组的基本问题。 在1950年代,伊瓦沙瓦(Iwasawa)通过考虑无限家庭的行为开始了一种新方法来研究此类方程式。 Iwasawa表明,许多这样的家庭具有明确的渐近行为。这导致了有关此类家庭产生的对称群体的数值增长率的基本猜想。 在过去的50年中,这种“主要猜想”的证明一直是抽象代数的核心目标之一。 该提议与这些猜想的改进有关,这些猜想涉及更精确的增长率度量。 关于广泛的影响,此类代数问题的工作导致了对社会必不可少的技术发展的发展,例如改进的压缩和安全传输数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Georgios Pappas其他文献
ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Georgios PappasGeorgios Pappas
- 通讯作者:Georgios PappasGeorgios Pappas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
- DOI:10.1016/j.meegid.2012.01.01610.1016/j.meegid.2012.01.016
- 发表时间:2012-04-012012-04-01
- 期刊:
- 影响因子:
- 作者:Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca ZingalesSusan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales
- 通讯作者:Bianca ZingalesBianca Zingales
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
- DOI:10.5194/essd-16-1703-202410.5194/essd-16-1703-2024
- 发表时间:20242024
- 期刊:
- 影响因子:11.4
- 作者:Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. HoteitY. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit
- 通讯作者:I. HoteitI. Hoteit
Digitizing Wildlife: The Case of a Reptile 3-D Virtual Museum
野生动物数字化:爬行动物 3D 虚拟博物馆案例
- DOI:10.1109/mcg.2022.318903410.1109/mcg.2022.3189034
- 发表时间:20222022
- 期刊:
- 影响因子:1.8
- 作者:S. Zotos;Marilena Lemonari;Michael Konstantinou;Anastasios Yiannakidis;Georgios Pappas;P. Kyriakou;Ioannis N. Vogiatzakis;A. AristidouS. Zotos;Marilena Lemonari;Michael Konstantinou;Anastasios Yiannakidis;Georgios Pappas;P. Kyriakou;Ioannis N. Vogiatzakis;A. Aristidou
- 通讯作者:A. AristidouA. Aristidou
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
- DOI:10.1016/j.scp.2023.10102610.1016/j.scp.2023.101026
- 发表时间:20232023
- 期刊:
- 影响因子:6
- 作者:I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. ZorpasI. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas
- 通讯作者:A. ZorpasA. Zorpas
共 7 条
- 1
- 2
Georgios Pappas的其他基金
Shimura Varieties, p-Adic Shtukas, and Local Systems
志村品种、p-Adic Shtukas 和本地系统
- 批准号:21007432100743
- 财政年份:2021
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
- 批准号:17016191701619
- 财政年份:2017
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
- 批准号:11022081102208
- 财政年份:2011
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
- 批准号:08026860802686
- 财政年份:2008
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
- 批准号:05010490501049
- 财政年份:2005
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
- 批准号:02011400201140
- 财政年份:2002
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
- 批准号:99703789970378
- 财政年份:1999
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:99963939996393
- 财政年份:1999
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:96232699623269
- 财政年份:1996
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
- 批准号:95961049596104
- 财政年份:1994
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:22449782244978
- 财政年份:2023
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:22450172245017
- 财政年份:2023
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:22451112245111
- 财政年份:2023
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:22450772245077
- 财政年份:2023
- 资助金额:$ 28万$ 28万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:22448792244879
- 财政年份:2023
- 资助金额:$ 28万$ 28万
- 项目类别:Standard GrantStandard Grant