Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
基本信息
- 批准号:0802686
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator is working on the following three problems:(A) He is attempting to describe integral models for Shimura varieties at primes of non-smooth reduction. In particular, he studies ``local models" for Shimura varieties and their relation with affine flag varieties for infinite dimensional groups and with deformation spaces of Galois representations. The motivation is to obtain information that can be used in the calculation of the Hasse-Weil zeta function of these varieties and in other number theoretic applications.(B) He is developing refined and functorial versions of the Grothendieck-Riemann-Roch theorem that would allow for the calculation of torsion information.(C) He is studying the representations that appear in the cohomology of arithmetic varieties with a finite group action.In particular, he continues his work on developing fixed point formulas for calculating invariants of such (integral) representations using two interconnected themes: the theory of cubic structures and the theory of central extensions of algebraic loop groups.The investigator's research is in the field of arithmetic algebraic geometry, a subject that blends two of the oldest areas of mathematics: the geometry of figures that can be defined by the simplest equations, namely polynomials, and the study of numbers. This combination has proved extraordinarily fruitful - having solved problems that withstood generations (such as ``Fermat's last theorem"). The investigator's work mainly concentrates on the study of certain polynomial equations that have many symmetries. There are connections with physics, the construction of error correcting codes and cryptography.
首席研究人员正在研究以下三个问题:(a)他试图以非平滑降低的数量来描述Shimura品种不可或缺的模型。特别是,他研究了Shimura品种的``本地模型''及其与无限尺寸群体和Galois表示的变形空间的仿射旗品种的关系。动机是为了获得可用于计算这些品种的Zeta Zeta功能的信息,并在其他数字的应用中进行了改进。 (c)他正在研究出现在算术品种的共同体中出现的表示形式,尤其是,他继续在开发有限的固定点公式来开发固定点的公式(以这种互构成的构造构建中,及其构造的理论:代数循环组。研究者的研究是在算术代数几何的领域,该主题融合了两个最古老的数学领域:数字的几何形状可以由最简单的方程式来定义,即最简单的方程,即,即多项式和数字的研究。事实证明,这种组合非常富有成果 - 解决了经验丰富的几代问题(例如``Fermat的最后一个定理'')。研究人员的工作主要集中于对某些具有许多对称性的某些多项式方程的研究。与物理学有联系,错误纠正码和密码术的构建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Pappas其他文献
ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Georgios Pappas - 通讯作者:
Georgios Pappas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
- DOI:
10.1016/j.meegid.2012.01.016 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales - 通讯作者:
Bianca Zingales
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
- DOI:
10.5194/essd-16-1703-2024 - 发表时间:
2024 - 期刊:
- 影响因子:11.4
- 作者:
Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit - 通讯作者:
I. Hoteit
Digitizing Wildlife: The Case of a Reptile 3-D Virtual Museum
野生动物数字化:爬行动物 3D 虚拟博物馆案例
- DOI:
10.1109/mcg.2022.3189034 - 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
S. Zotos;Marilena Lemonari;Michael Konstantinou;Anastasios Yiannakidis;Georgios Pappas;P. Kyriakou;Ioannis N. Vogiatzakis;A. Aristidou - 通讯作者:
A. Aristidou
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
- DOI:
10.1016/j.scp.2023.101026 - 发表时间:
2023 - 期刊:
- 影响因子:6
- 作者:
I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas - 通讯作者:
A. Zorpas
Georgios Pappas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Pappas', 18)}}的其他基金
Shimura Varieties, p-Adic Shtukas, and Local Systems
志村品种、p-Adic Shtukas 和本地系统
- 批准号:
2100743 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
- 批准号:
1701619 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
- 批准号:
1360733 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
- 批准号:
1102208 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
- 批准号:
0501049 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
- 批准号:
0201140 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
- 批准号:
9970378 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9623269 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
- 批准号:
9596104 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
基于“理-效-物-地-亲”策略研究藏药沙棘特色品种“形-质-效”多维品质特征及形成机制
- 批准号:82374145
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于多尺度可迁移的小麦氮高效品种高通量筛选方法研究
- 批准号:32301693
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
包含品种耐热性的花期高温对玉米影响机理模块研究
- 批准号:42375194
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
旱地小麦品种高产性和稳产性关系及其对土壤肥力的响应
- 批准号:32372225
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
耦合三维辐射传输模型与叶片光合过程的玉米品种级LUE表型鉴定研究
- 批准号:42371373
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
- 批准号:
577144-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Alliance Grants
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
- 批准号:
1701619 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
The geometry of Shimura varieties over positive characteristic and the development of Galois representations
正特征志村簇的几何及伽罗瓦表示的发展
- 批准号:
15K04787 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shimura Varieties and Galois representations
志村簇和伽罗瓦表示
- 批准号:
1301921 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
- 批准号:
1134046 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant