Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods, and Polarimetric Radar

使用多角度雪花相机、视觉船体、先进散射方法和偏振雷达准确表征冬季降水

基本信息

  • 批准号:
    1344862
  • 负责人:
  • 金额:
    $ 58.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-12-01 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

This award will establish a novel approach to characterization of winter precipitation and modeling of associated polarimetric radar observables, with a longer-term goal to significantly improve the radar-based quantitative precipitation estimation in stronger, more hazardous, winter events. The principal enabling technologies are (i) multi-angle snowflake camera (MASC), (ii) visual hull (VH) geometrical method for reconstruction of 3D hydrometeor shapes, (iii) fast and accurate advanced higher order computational electromagnetics (CEM) scattering methods, and (iv) fully polarimetric data from the advanced CSU-CHILL radar. The main objectives of this research and methods to be employed are:- Microphysical and realistic 3D-geometrical characterization of ice particles using MASC- Combining fall speed and particle geometry to estimate density-"size" power laws, snow rates- Calculations of "particle-by-particle" scattering matrices and polarimetric radar observables- Sensitivity studies of various parameters of scattering models in simulations of radar measurables- Analysis and cross-validation of CSU-CHILL and MASC/VH/CEM data for winter precipitation events- Derivation and validation of radar-based snow rate relations for previously classified particle types Intellectual merit is contained in and warranted by the research objectives described above. Overall, it is in the synergistic use of new research instrumentation (MASC) coupled with accurate, efficient, versatile, and robust CEM scattering methods as well as state-of-the-art polarimetric radar (with exceptional polarization purity) to substantially increase the accuracy of modeling of radar observables and characterization of winter precipitation. This is the first time real (measured) snowflake images will be used with highly accurate and efficient realistic scattering calculations, to obtain radar measurable parameters, which will be validated by a highly precise polarimetric radar. This will be the first set of high-quality multi-year data for scattering matrices and the full set of radar observables for MASC-based classified particle types constituting winter precipitation. The full-wave CEM modeling approach to atmospheric particle scattering based primarily on the higher order method of moments (MoM) will be able to overcome all shortcomings of both the T-matrix and the DDA methods. Snowflake 3D shape reconstruction by the VH method based on three MASC photographs is much more accurate than any other available snowflake shape reconstruction examples.This research will significantly improve, in a longer term, the radar-based estimation of liquid equivalent snow rates near the surface in stronger, more hazardous, winter events by first classification of precipitation type followed by quantification. Winter precipitation studies using the combined MASC and OTT-Pluvio snow gauge will impact microphysical parameterizations used in advanced cloud resolving models. "Look-up tables" with comprehensive scattering properties of ice hydrometeors, obtained by MASC/VH/CEM-methods, at multiple radar/radiometric sensor frequencies from 3-150 GHz, should be of interest and use for many researchers in the field. Radar-based snow rate relations will be directly applicable to improved quantification of winter precipitation by the WSR-88D network. This research is also aimed at establishing and promoting the full-wave CEM modeling approach and the higher order MoM as an enabling resource and technology for future research in atmospheric particle scattering analysis. Applications may be extended to radiometric cloud/snow detection and mm-wave radars. Having potential to change the way characterization of winter precipitation is done; this research is transformative in its nature. Educational and outreach activities include training of two Ph.D. students, a new course on scattering by precipitation particles, advanced workshops with a series of seminars/lectures on the topics of the project for graduate students, faculty, and scientists within the Colorado Front Range, and K-12 outreach workshops on Snowflake Research for high school students.
该奖项将建立一种新颖的方法来表征冬季降水和相关极化雷达可观测数据的建模,其长期目标是在更强、更危险的冬季事件中显着改进基于雷达的定量降水估计。主要支持技术包括 (i) 多角度雪花相机 (MASC)、(ii) 用于重建 3D 水凝物形状的视觉船体 (VH) 几何方法、(iii) 快速准确的先进高阶计算电磁学 (CEM) 散射方法,以及 (iv) 来自先进 CSU-CHILL 雷达的全偏振数据。这项研究的主要目标和采用的方法是: - 使用 MASC 对冰颗粒进行微观物理和真实的 3D 几何表征 - 结合下落速度和颗粒几何形状来估计密度 - “尺寸”幂律、降雪率 - 计算“颗粒” “逐粒子”散射矩阵和极化雷达可观测值 - 雷达可测量值模拟中散射模型各种参数的灵敏度研究 - CSU-CHILL 和 CSU-CHILL 的分析和交叉验证冬季降水事件的 MASC/VH/CEM 数据 - 针对先前分类的颗粒类型基于雷达的雪率关系的推导和验证 上述研究目标包含并保证了智力价值。总体而言,通过协同使用新型研究仪器 (MASC) 与准确、高效、通用且稳健的 CEM 散射方法以及最先进的偏振雷达(具有出色的偏振纯度),可以大幅提高雷达观测值建模的准确性和冬季降水的表征。这是第一次将真实(测量的)雪花图像与高精度和高效的现实散射计算结合使用,以获得雷达可测量参数,并将由高精度偏振雷达进行验证。这将是第一组高质量的散射矩阵多年数据和构成冬季降水的基于 MASC 的分类颗粒类型的全套雷达观测数据。主要基于高阶矩法 (MoM) 的大气颗粒散射全波 CEM 建模方法将能够克服 T 矩阵和 DDA 方法的所有缺点。基于三张 MASC 照片的 VH 方法进行的雪花 3D 形状重建比任何其他可用的雪花形状重建示例都要准确得多。从长远来看,这项研究将显着改进基于雷达的地表附近液体等效雪率的估计在更强、更危险的冬季事件中,首先对降水类型进行分类,然后进行量化。使用 MASC 和 OTT-Pluvio 雪计联合进行的冬季降水研究将影响高级云解析模型中使用的微物理参数化。通过 MASC/VH/CEM 方法在 3-150 GHz 的多个雷达/辐射传感器频率下获得的具有冰水凝物综合散射特性的“查找表”,应该引起该领域许多研究人员的兴趣和使用。基于雷达的降雪率关系将直接适用于 WSR-88D 网络改进的冬季降水量化。这项研究还旨在建立和推广全波 CEM 建模方法和高阶 MoM,作为未来大气颗粒散射分析研究的支持资源和技术。应用可以扩展到辐射云/雪探测和毫米波雷达。有潜力改变冬季降水的表征方式;这项研究本质上是变革性的。教育和外展活动包括培训两名博士。学生,一门关于降水颗粒散射的新课程,为科罗拉多前沿范围内的研究生、教师和科学家举办的一系列关于该项目主题的研讨会/讲座的高级研讨会,以及关于雪花研究的 K-12 外展研讨会高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Branislav Notaros其他文献

Branislav Notaros的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Branislav Notaros', 18)}}的其他基金

CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
  • 批准号:
    2305106
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Novel Integrated Characterization of Microphysical Properties of Ice Particles Using In-Situ Field Measurements and Polarimetric Radar Observations
利用原位现场测量和偏振雷达观测对冰粒微物理特性进行新颖的综合表征
  • 批准号:
    2029806
  • 财政年份:
    2020
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Novel RF Volume Coils for High and Ultra-High Field Magnetic Resonance Imaging Scanners
用于高场和超高场磁共振成像扫描仪的新型射频体积线圈
  • 批准号:
    1810492
  • 财政年份:
    2018
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Electromagnetic Field Profile Design for Next-Generation Travelling-Wave MRI
合作研究:下一代行波 MRI 的电磁场轮廓设计
  • 批准号:
    1307863
  • 财政年份:
    2013
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Diakoptic Approach to Modeling and Design of Complex Electromagnetic Systems
复杂电磁系统建模和设计的透光方法
  • 批准号:
    1002385
  • 财政年份:
    2010
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Higher-Order Finite Element-Moment Method Modeling Techniques for Conformal Antenna Applications
共形天线应用的高阶有限元矩法建模技术
  • 批准号:
    0647380
  • 财政年份:
    2006
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Continuing Grant
Efficient Higher Order Techniques for Electromagnetic Modeling and Design of Photonic Crystal Structures
用于电磁建模和光子晶体结构设计的高效高阶技术
  • 批准号:
    0621987
  • 财政年份:
    2006
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Efficient Higher Order Techniques for Electromagnetic Modeling and Design of Photonic Crystal Structures
用于电磁建模和光子晶体结构设计的高效高阶技术
  • 批准号:
    0650719
  • 财政年份:
    2006
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
Higher-Order Finite Element-Moment Method Modeling Techniques for Conformal Antenna Applications
共形天线应用的高阶有限元矩法建模技术
  • 批准号:
    0324345
  • 财政年份:
    2003
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Continuing Grant
Large-Domain Hybrid Moment Method-Physical Optics Techniques for Efficient and Accurate Electromagnetic Modeling of Cars and Aircraft over a Wide Range of Frequencies
大域混合矩法-物理光学技术,用于在宽频率范围内对汽车和飞机进行高效准确的电磁建模
  • 批准号:
    0115756
  • 财政年份:
    2001
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“经验-成分-智能感官-毒效表征”的蒙药诃子汤炮制草乌“稍有麻舌感”质量评价体系研究
  • 批准号:
    82360848
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
  • 批准号:
    32371262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
  • 批准号:
    12302240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间包络误差表征下五轴机床装配精度衍生机理与层递调控机制
  • 批准号:
    52365064
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于显微时序成像构建活细胞行为学表征系统,探究黄芪甲苷抑制肌成纤维细胞表型转化的动态机制
  • 批准号:
    82305051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Continuing Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of dominant negative ACTA2 variants : a zebrafish model for non-syndromic aortic aneurysms
显性失活 ACTA2 变异的表征:非综合征性主动脉瘤的斑马鱼模型
  • 批准号:
    24K18891
  • 财政年份:
    2024
  • 资助金额:
    $ 58.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了